Capitolo 13
Psicofisiologia sociale

John T. Cacioppo e Richard E. Petty*

Premessa

Si tende a trovare ovvia l'affermazione che le società umane cambiano il loro modo di reagire a stimoli esterni e che gli oggetti, i problemi, gli eventi dell'ambiente esterno influenzano il comportamento verso gli altri. Sembra invece abbastanza difficile per la gente riuscire a cogliere fino a che punto la società umana influenza in maniera considerevole anche l'organismo e i fattori fisiologici sono elementi importanti nella determinazione dei processi cognitivi e del comportamento sociale. Nonostante ciò ci sono numerosi esempi delle influenze reciproche tra sistema sociale e sistema fisiologico (Cacioppo e Petty, 1983b).

Probabilmente, per esempio, gli italo-americani ricorrono meno degli irlandesi-americani alle cure mediche, e quando gli italo-americani, al contrario degli irlandesi, si sottopongono a intervento medico è meno facile che lo facciano per disturbi otorinolaringoiatrici (Zola, 1966). I gruppi etnici mostrano differenze anche nelle risposte autonome agli stimoli dolorosi. Per esempio, si è scoperto che membri del gruppo etnico italiano in un ospedale americano ritenevano che il dolore fosse qualcosa da evitare, mentre membri del gruppo etnico irlandese, nello stesso ospedale, pensavano che il dolore fosse un peso da sopportare (Zborowski, 1932). In accordo con queste credenze socialmente indotte, le mogli italo-americane mostravano una soglia per il dolore più bassa e una sensibilità leggermente più grande nella rilevazione del potenziale cutaneo palmare quando venivano esposte a una serie di shock elettrici rispetto a un campione di confronto di mogli irlandesi- americane. Questi riscontri suggeriscono che le risposte comportamentali delle persone a reazioni fisiologiche variano in funzione del loro livello di socializzazione.

* Traduzione di Claudia Zanchi.

Analogamente, il conflitto familiare e sociale altera i processi ormonali e autonimi, come pure i sintomi riferiti e i comportamenti legati alla malattia (Pennebaker, 1983).

Il nostro scopo in questo capitolo è fornire una panoramica della ricerca su tali problematiche. Daremos una definizione della psicofisiologia sociale ed esamineremo le discipline dalle quali è nato questo campo di ricerca, identificando i presupposti di base su cui poggia l'interesse attuale della psicofisiologia sociale. Passeremo quindi in rassegna gli studi intesi a meglio comprendere l'influenza reciproca dei sistemi umani sociali e fisiologici.

La nostra rassegna è incentrata anzitutto sulle ricerche che hanno come presupposto il fatto che il comportamento sociale sia influenzato dalle variazioni dell'arousal fisiologico. In origine questo assunto è alla base di un'abbondante letteratura in psicologia sociale. In seconda istanza, la nozione di uno stato generale e diffuso di arousal è stata rivista in maniera critica e notevolmente perfezionata all'interno dell'area della psicofisiologia (Fowles, 1980; Lacey, 1967), senza mai essere stata messa in discussione dalla psicologia sociale (Kiesler e Pallak, 1976). Altri aspetti particolari della psicofisiologia sociale si possono trovare in Cacioppo e Petty (1983a); Cacioppo, Petty e altri (1986); Cacioppo, Petty e Andersen (1988); Waid (1984); Wagner e Manstead (1989).

Rassegna della psicofisiologia sociale

La psicofisiologia sociale per definizione fa uso di procedure non invasive per studiare le relazioni tra gli eventi fisiologici reali o percepitati e gli effetti verbali o comportamentali della società. Questo campo emergente rappresenta l'intersezione della psicologia sociale e della psicofisiologia e sta diventando un campo di ricerca interdisciplinare di vasta portata e consistenza.

La psicologia sociale, la più vecchia delle due discipline coapostitiva, è orientata verso la comprensione degli effetti cognitivi, affettivi e comportamentali della società umana. È divisa in aree concettuali di ricerca (ad esempio l'aggressività, l'altruismo, le opinioni, le attrazioni) ed è ricca di modelli teorici.

L'ambito della psicologia sociale è vasto, poiché va dagli effetti a lungo termine dell'interazione madre-bambino e insegnante-alunno, fino agli effetti dell'interazione o della struttura di gruppo.

La ricerca in psicologia sociale per molti anni è stata ampiamente focalizzata sulle determinanti situazionali delle componenti cognitive e del comportamento sociale, con ampia esclusione delle determinanti psicofisiologiche. Un'indagine di qualsiasi testo introduttivo di psicologia sociale o di un qualsiasi testo specialistico sulle teorie in psicologia sociale rivela subito che è stato detto poco sulle reazioni fisiologiche (percepibili o no) che insorgono nel corpo umano. Infatti i dati più comuni sui quali sono costruite le attuali teorie psicologico-sociali sono basati sui comportamenti verbali e sui resoconti sog-
Capitolo tredicesimo

gettiva (giudizi, valutazioni, programmi, ricordi). Queste misure o loro varianti
erano in molti casi come prova dell’efficacia delle manipolazioni sperimentali,
dell’effetto (manca di effetto) di supposti processi, degli interventi e delle
conseguenze delle manipolazioni sperimentali.

La psicofisiologia, al contrario, impiega procedure non invasive per studiare le
interazioni tra eventi fisiologici e comportamento riportato o manifestato
per una persona. I testi di psicofisiologia sono più spesso divisi per aree
anatomiche (ad esempio sistema cardiovascolare, sistema gastrointestinal) o
tecniche di registrazione (ad esempio potenziali evocati, attività elettrodernica)
che per aree concettuali di ricerca. Sebbene ci siano alcune eccezioni
in entrambe le discipline, generalmente accade che, di fronte ai numerosi testi
teorici della psicologia sociale, in psicofisiologia si può trovare una netta
preponderanza di libri ricchi di dettagli tecnici sui metodi di registrazione e di
analisi bioelettrica.

L’attuale forza dell’area interdisciplinare della psicofisiologia sociale è attri-
buibile in parte alla natura complementare della psicologia sociale e della
psicofisiologia e in parte alle crescenti conferme che si sono ottenute a partire
da una semplice tesi: una teoria accurata ed esaustiva dell’interazione
organismo-ambiente deve tener conto del fatto che le reazioni umane sono
ampiamente biocellulari nei loro antefatti e nelle loro conseguenze.

La struttura di base e la funzione del sistema nervoso umano forniscono il
substrato fisico necessario a questa tesi. Gli impulsi sensoriali viaggiano dal-
lore organismo verso il cervello trasmettendo informazioni sui processi somato-
viscerali, e dall’ambiente esterno fornendo informazioni esatte per i sistemi
di organizzazione e interazione umana. La ricerca e la percezione dell’informa-
zione sensoriale nell’ambiente interno ed esterno, come pure le reazioni
che provengono dal cervello (o che sono da esso modificate), sono drasticamente
influenzate dalle informazioni precedenti (ad esempio mnestiche) e già
consolidate, derivanti dalle componenti sociofisiologiche dell’individuo. Un’im-
plazione importante di questa influenza sinergica è che la ricerca focalizzata
su un aspetto della condizione umana (ad esempio fisiologica), con l’esclu-
sione dell’altra (ad esempio sociale), è destinata a fornire una spiegazione inco-
piete e talvolta distorta delle reazioni umane.

Un breve esame potrebbe chiarire quest’ultimo punto. La tipica osservazione
fatta su cani isolati sottoporti a condizionamento classico avversivo è un accen-
tuato aumento della frequenza cardiaca (circa 50-100 battiti per minuto). Questa
notevole risposta fisiologica allo stimolo condizionato viene eliminata e tal-
volta trasformata in una risposta deceleratoria quando lo sperimentatore acca-
rezza il cane durante ogni fase di condizionamento (Lynch e McCarthy, 1969).
Così sembrerebbe che i fattori sociali alterno non solo l’intensità di una risposta
fisiologica, ma anche la natura essenziale delle risposte fisiologiche a stimoli
non sociali.

Con l’emerger di questa prospettiva si è evidenziato che le concomitanti

fisiologiche dei processi cognitivi e del comportamento sociale, mentre non
si ancorenno a un particolare costrutto psicologico-sociale, procurano intuizioni
iper e dati informativi a favore (o contro) i processi sociali postulati.

Uno dei più pervasivi effetti della società umana è l’influenza sociale (per
esempio, la persuasione). In una serie di studi sono stati utilizzate procedure
elettrofisiologiche per stabilire il modo in cui le persone rispondono alle
comunicazioni persuasive (Cacioppo e Petty, 1981b). In uno studio effettuato per
stabilire la relazione tra le osservazioni psicofisiologiche e i comportamenti
sociali nell’area della persuasione, le persone si aspettavano di udire messaggi
editoriali che sostenessero posizioni contrarie alla loro opinioni iniziali (ad
esempio contrari ai loro atteggiamenti), e veniva loro chiesto di “concentrarsi”
sulle indicazioni che seguivano ogni messaggio. I soggetti furono così indotti
attraverso istruzioni sperimentali ad assumere il ruolo di ricevente cognitiva-
mente attivo del messaggio. Il risultato più sorprendente fu che i soggetti mostra-
vano un’intensità elettromiografica periorale meno evidente nelle fasi che segui-
vano piuttosto che in quelle che precedevano i messaggi di avvertimento, mentre
l’intensità elettromiografica non orale rimaneva costante e silente durante queste
fasi della ricerca. Questi dati suggerirono che l’attività elettromiografica periorale
potesse indicare l’intensità con cui i soggetti consideravano imminente una
comunicazione persuasiva.

In un altro studio (Cacioppo e Petty, 1979a) si soggetti veniva anticipato
che avrebbero udito comunicazioni favorevoli, contrarie o neutre rispetto ai
loro atteggiamenti. Usando misure di autovalutazione, troviamo che i sog-
getti rispondevano positivamente più alle opinioni favorevoli che a quelle
contrarie, e in maniera simile ai messaggi favorevoli e neutri. (Il messaggio
neutro, che era la notizia di un progetto archeologico, risultava piacevole.) Come
nel precedente studio, l’attività elettromiografica periorale aumentò in modo
più evidente in seguito al lavaggio di un altro comunicazione contraria
tuttavia personali del soggetto, anche se in questa ricerca non veniva detto
ai soggetti di concentrarsi. Inoltre, l’attività elettromiografica periorale aumentò
in tutte le condizioni durante la presentazione del messaggio, in accordo con
le precedenti ricerche che collegano l’attività elettromiografica periorale con
l’elaborazione del linguaggio silente (McGuigan, 1978). Infine i pattern dei
comportamenti facciali minimi, monitorati usando elettrodi di superficie posti
sul corrugatore (sopracciglia), zigomatico (zghone), e depressore (ai lati della
bocca), differenziavano le presentazioni di messaggi favorevoli e contrari. Questi
datai psicofisiologici furono utili nel chiarire se, e in quali condizioni, coloro
che ricevono messaggi persuasivi diventano partecipanti attivi del processo
de persuasione (Petty e Cacioppo, 1981; Cacioppo, Petty e altri, 1986).

In conclusione, la psicofisiologia sociale fornisce una prospettiva unica e
di vasta portata delle reazioni umane. La pur limitata panoramica della ricerca
La ricerca contemporanea in psicofisiologia sociale

La maggior parte delle ricerche psicofisiologico-sociali accumulatesi è caratterizzata dall'asunto che un generale e talvolta percepibile stato di attivazione fisiologica è l'ovvio antecedente e conseguente fisiologico del comportamento sociale. Noi perciò centreremo la nostra rassegna sugli studi che sostengono questa affermazione. Come ci si potrebbe aspettare, le nozioni riguardanti l'arousal e il comportamento sociale, sebbene interessanti, sono state tanto semplificate da produrre fin dall'inizio un disaccordo fra i dati. Per questo la rassegna della ricerca contemporanea include commenti critici e speculazioni riguardanti ciò che più entra in gioco nell'interazione organismo-ambiente.

Attivazione fisiologica come stimolo per la ricerca causale

La nozione che l'arousal fisiologico può servire come stimolo iniziale per la ricerca cognitiva e per il processo di etichettamento (labeling) fu decisamente portata avanti da Schachter e Singer (1962, 1979). Essi descrissero un modello del ruolo svolto dalle reazioni fisiologiche nell'esperienza dell'emotione. Stabilirono inoltre che, indipendentemente dai fattori fisiologici presenti negli stati emotionali, il legame tra questi non è necessario per la loro induzione. Secondo Schachter e Singer la sensazione di arousal fisiologico, se inspiegabile, crea un "bisogno di valutazione" che spinge a una ricerca attiva di una causa plausibile e di un etichettamento dell'arousal esperito.

Ciò che all'inizio era un ambiguo e diffuso segnale proveniente dal corpo è quindi trasformato in un sentimento specifico o in un'esperienza emotionale grazie all'aggiunta di un'adeguata etichetta cognitiva. In altre parole, sentire un cambiamento nel proprio livello di arousal dà inizio a una ricerca delle cause. Se il cambiamento era atteso, la ricerca causale è rapidamente circuitata; se il cambiamento non era atteso, la ricerca dei possibili fattori causali (ad esempio covariati nell'ambiente sociale) continua fino a che viene identificato un fattore causale plausibile. Lo stato esperienziale allora si trasforma per ridurre qualsiasi incoerenza residua tra lo stato fisiologico percepito e lo stato emotionale inferito.

"Suppongo che le etichette e le valutazioni edoniche attribuite a un'interessante varietà di condizioni corporee siano cognitivamente determinate. Ovviamente ci sono dei limiti. È improbabile che qualcuno con una peritonite non diagnosticata possa avere la convinzione di essere euforico o in benessere mentre non può che sentirsi gravemente malato. Suppongo tuttavia che i limiti siano sorprendentemente ampi. A noi vomitare può sembrare spiacente, ma per un commensale romano poteva essere un vivo piacere" (Schachter, 1964, p. 170).

Schachter e Singer (1962) hanno sottoposto a verifica il loro modello iniettando ai soggetti una piccola quantità di adrenalina, che è un simpaticomimetico (cioè uno "stimolante"). I soggetti credevano che l'iniezione fosse parte di uno studio sull'acuità visiva. Ad alcuni fu detto che l'iniezione aveva un effetto collaterale che li avrebbe fatti sentire attivati, mentre ad altri non venne data questa informazione. I soggetti poi furono messi a contatto con un'altra persona che, a loro insaputa, era un collega dello sperimentatore (collaboratore "complice"). A entrambi veniva richiesto come parte dell'esperimento di compilare un questionario mentre aspettavano l'effetto del farmaco. Appena questo effetto si manifestava, il collaboratore incominciava ad agire come se il compilare il questionario lo rendesse arrabbiato o euforico. Secondo il modello di Schachter e Singer (1962), i soggetti che sapevano che l'attivazione avverita era attribuibile al farmaco non sarebbero stati influenzati dagli stimoli situazionali (cioè il comportamento del collaboratore), mentre i soggetti che cominciavano a sentire un inspiegabile aumento del loro livello di attivazione, senza saperne la causa, sarebbero stati influenzati dal comportamento del collaboratore. In accordo con il modello, i soggetti che erano in coppia col collaboratore "adirato", e che sapevano che era stata l'iniezione a provocare l'attivazione, pensavano di essere più arrabbiati rispetto ai soggetti accoppiati con il collaboratore "adirato" ma non consapevoli che l'iniezione era la causa della loro attivazione.

Contrariamente al modello, tuttavia, i soggetti in coppia col collaboratore "euforico" non erano generalmente influenzati dall'informazione che era stata loro data prima circa i possibili effetti collaterali dell'iniezione. Questo suggerisce che un improvviso aumento dell'attività simpatica non è percepito come neutro, ma piuttosto come una sensazione corporea stressante o spiacente (Maslach, 1979). Questo risultato discordante, dovuto a problemi nelle procedure metodologiche e statistiche usate da Schachter e Singer (1962) per verificare il loro modello, e i recenti fallimenti nel tentativo di confermare le previsioni di tale modello, hanno dato adito a seri dubbi riguardo all'adeguatezza del modello stesso (vedi i commenti critici di Crider, 1981; Masefield e Wagner, 1981). Ciò nonostante, si possono ritrovare due elementi del loro modello in numerose teorie sociopsicologiche: 1) i cambiamenti nell'attivazione fisiologica sono evocati da diversi stimoli sociali e rilevati dall'individuo; 2) quando una spiegazione per tali cambiamenti non è evidente, l'individuo utilizza l'informazione sociale o situazionale disponibile per interpretare il cambiamento percepito nell'attivazione.
Arousal e attrazione interpersonale. Arousal e stati passionali

Walster (1971) e Berscheid e Walster (1978) hanno ripreso la teoria di Schachter e Singer (1962) sull’emozione per spiegare lo sviluppo dell’intensa attrazione sessuale o sentimentale verso un’altra persona (amore appassionato). In accordo col modello di Walster e Berscheid sull’attivazione fisiologica e l’attrazione, l’individuazione di un nuovo e alto livello di attivazione fisiologica, indipendentemente dalla fonte dell’attivazione, spinge a un amore appassionato “che dura fino a che uno attribuisce il suo stato di agitazione alla passione” (Walster, 1971): cioè, secondo il ragionamento di Schachter e Singer, si pensa che l’amore appassionato derivi dalla combinazione di un’attività fisiologica percepibile e di un’etichetta adeguata alla passione derivante da elementi situazionali associati con l’attivazione. In accordo con questo modello, se gli elementi situazionali spingono l’individuo a etichettare l’attivazione percepita in modo inconscio e incerto, a un stato di amore appassionato, questo stato non avrà luogo anche se si verifichino le stesse modificazioni fisiologiche che, se accoppiate con un’adeguata etichetta di passione, fanno insorgere il sentimento di amore appassionato. Inoltre, anche se viene scelta l’etichetta appropriata di passione, “non appena egli cessa di attribuire i suoi sentimenti tumultuosi alla passione, l’amore dovrebbe estinguersi” (ibid).

Due esperimenti di White, Fishbein e Rustein (1981) illustrano bene il modello. Nel loro primo esperimento, soggetti maschi compivano un esercizio fisico per 120 secondi (condizione di alta attivazione) o per 15 secondi (condizione di bassa attivazione). Prove precedenti avevano indicato che la prima procedura dava luogo a incrementi maggiori nella frequenza cardiaca, a più alti livelli di autovalutazione dell’attivazione fisiologica e a stati d’animo equivalenti. I soggetti si esercitavano dopo una serie di compiti insoliti (ad esempio toccare il piede di un coniglio, svolgere mentalmente compiti aritmetici), che veniva loro richiesto di eseguire nella prima parte dell’esperimento.

Immediatamente dopo l’esercizio, il soggetto veniva accompagnato in un’altra stanza dove vedeva un videotape di cocente attratti o non attratti, che egli doveva incontrare. Seguendo il videotape il soggetto compilava un questionario nel quale valutava la ragazza del videotape. I risultati furono come ci si aspettava in base al modello dell’attivazione e dell’amore appassionato. Quando la studentessa era attraente, piaceva di più in condizioni di alta piuttosto che di bassa attivazione, e quando non era attratta piaceva di meno durante l’alta attivazione che non durante la bassa attivazione. Questo secondo risultato fu interpretato come prova che l’alta attivazione era accoppiata a un etichettamento di repulsione per la studentessa non attraente.

Il secondo esperimento di White e colleghi era identico al primo tranne che per il modo in cui veniva indotta l’attivazione fisiologica. Invece di indurre uno stato “neutro” di attivazione attraverso l’esercizio fisico, l’attivazione fu indotta sottoponendo dei soggetti all’ascolto della descrizione macabra di un omicidio con mutilazioni (“attivazione negativa”), o di una selezione di racconti umoristici (“attivazione positiva”), incisa su nastro. I soggetti in condizione di bassa attivazione ascoltavano la descrizione del sistema circolatorio della rana. Erano stati fatti di nuovo dei pretesti che indicavano che le condizioni di attivazione positiva e negativa davano luogo ad aumenti simili della frequenza cardiaca e dell’autovalutazione dell’attivazione emotionale e fisiologica, producendo ciascuna delle due condizioni punteggi più alti per ciascuna di queste dimensioni rispetto a quella a bassa attivazione. I risultati furono simili a quelli ottenuti nel primo esperimento. I soggetti nella condizione di attivazione “positiva” e “negativa” mostrarono un’attrattività interpersonale e sentimentale più forte verso la studentessa attraente, e un’attrattività più debole verso la studentessa non attraente rispetto ai soggetti in condizioni di bassa attivazione. Così, come suggerito dal modello dell’attivazione e dell’amore appassionato di Walster e Berscheid (Berscheid e Walster, 1978; Walster, 1971), l’attivazione fisiologica percepita, indipendentemente dalla sua fonte, favorisce una ricerca dell’etichetta causale che spinge, dati appropriati elementi situazionali, a una forte attrazione interpersonale.

Sono comunque possibili parecchie interpretazioni alternative per questi dati. I risultati riguardo la misattribuzione sia dell’arousal “positivo” che di quello “negativo” potrebbero indicare che una forte attrattiva verso una col- lega interessante è accompagnata da sentimenti sia positivi (eccitamento, anticipazione) che negativi (dubbi, paura del rifiuto). Analogamente, il ridotto interesse per le coetanee non attraenti, che è stato rilevato in condizioni di arousal sia positivo che negativo, potrebbe indicare che il rifiuto di una studentessa non attraente è accompagnato da sentimenti negativi (tensione, paura di imbarazzo) e positivi (derivanti dalla distanza sociale che sta fra voi e la persona non attraente). In alternativa, l’attivazione attribuita erroneamente dai soggetti può aver perduto la sua qualità affettiva (positiva o negativa) diven- tando ambigua percepizione dell’attivazione dal momento che i soggetti vedevano e valutavano solo le fotografie delle studentesse. Ancora un’altra possibil- lità è che l’attivazione fisiologica percepita, provocata dagli eventi negativi o positivi nella prima parte di queste ricerche, sia il residuo di uno stato di attivazione non percepito nel momento in cui venivano fatte le valutazioni delle studentesse. Se l’attivazione era diventata ambigua o residua (non percepibile) al momento della valutazione delle studentesse, allora la polarizzazione affettiva verso studentesse attraenti o non attraenti sarebbe stata prevedibile anche se l’attivazione non fosse stata chiaramente “positiva” o “negativa.”

Arousal e intimità interpersonale

Un altro modello psicologico-sociale di attivazione e attrazione è stato pro- posto da Patterson (1976) per spiegare l’intimità interpersonale. Secondo Pat-
Capitolo tredicesimo

Psycofisiologia sociale

stro studio è stato realizzato per giustificare le due principali ipotesi contenute nel modello dell'attivazione e dell'intimità di Patterson (1976).

La prima ipotesi era che “dopo un iniziale periodo di interazione, un sostanziale aumento nell'intimità di un membro della coppia causava un aumento nell'attivazione dell'altro membro” (Couts, Schneider e Montgomery, 1980).

Le analisi statistiche delle misure di attivazione si riferivano ai valori differenziali piuttosto che ai punteggi grezzi, e non fu fornita nessuna indicazione dell'eguaglianza dei valori iniziali o indici di regressione. Ciò rende il risultato di queste analisi difficili da interpretare (Cacioppo e Petty, 1983a); inoltre essi hanno fornito solo un parziale supporto alla prima ipotesi. Il cambiamento nell'attivazione autoriferita non era provocato in maniera significativa dalla manipolazione dell'intimità, sebbene ci fosse una tendenza nella direzione predetta. Le analisi delle modificazioni della frequenza cardica rivelarono che i soggetti in condizioni di aumentata intimità mostravano un incremento della frequenza cardica media mentre i soggetti in condizioni di controllo mostravano una diminuzione della frequenza cardica, elemento questo che sembrerebbe suffrargare il modello di Patterson.

La seconda ipotesi, che “dopo un cambiamento nell'attivazione, l'aumento nell'intimità da parte di un primo membro provocherà o un reciproco o un compensatorio adattamento da parte del secondo membro” (Couts, Schneider e Montgomery, 1980) non ha ricevuto alcuna conferma. La manipolazione del rapporto intimo non provoca, dopo la fase 1, comportamenti intimi nei soggetti ai quali si imposta la colonna. Si ricorda che si era previsto che i soggetti ricambiassero i comportamenti intimi della colonna. Inoltre, l'intimità dei soggetti ai quali non si imposta la colonna dopo la fase 1 risultava influenzata dalla manipolazione della variabile intimità, ma in maniera opposta a quanto previsto dal modello di Patterson: l'aumento di intimità da parte di un interlocutore inizialmente non graduato spingeva a un atteggiamento di reciprocità, piuttosto che compensatorio, da parte del soggetto.

Lo studio di Couts e colleghi solleva alcune questioni circa l'adeguatezza del modello dell'intimità interpersonale di Patterson (1976). Si si accettano i dati di Couts a sostegno della prima predizione derivante dal modello di Patterson (e cioè che se un'persona A aumenta il livello di intimità nell'interazione, ciò determina un incremento del livello di arousal nella persona B), allora diviene evidente l'impossibilità di sostenere la seconda predizione derivante dal modello di Patterson. Si potrebbero anche avanzare ulteriori dubbi sul sostegno che Couts e colleghi forniscono alla prima predizione.

Essi hanno trovato che aumentare l'intimità dell'interazione durante la fase 3 produceva un incremento della frequenza cardica e una tendenza non significativa a uno stato di maggiore attivazione nel resoconto soggettivo. Tuttavia l'aumento dell'intimità nell'interazione potrebbe aver richiesto ai soggetti un aggiustamento posturale, o più semplicemente potrebbe aver determinato in
essi una minore inibizione a muoversi sulla sedia. Dal momento che sappiamo che la frequenza cardiaca è legata all’attività corporea generale (Obrist, 1981), le modificazioni osservate in questa potrebbero riflettere non il livello generale di attivazione fisiologica, ma più semplicemente un aumento dell’attività motoria da parte del soggetto. Se tale dubbio è valido, si può ragionevolmente supporre che Coutts e colleghi non abbiano posto una correlazione significativa tra indici cardiaco e misure soggettive dell’arousal. Sebbene in questo modo la seconda previsione di Patterson non possa essere respinta, dato che non si danno le condizioni per sottoporla a verifica, rimane la questione del perché l’aumento dell’intimità nell’interazione non abbia prodotto un aumento dell’arousal nella persona B (il che vuol dire che è coincolta la prima previsione).

Arousal e affollamento

Il termine densità della popolazione si riferisce al numero di persone per unità di spazio, mentre il termine affollamento si riferisce al concomitante stato soggettivo o, più specificamente, “all’esperienza stressante di spazio limitato e/o della presenza di troppe persone” (Baum e Valins, 1979). Worcel e Teddle (1976) hanno proposto una teoria bifattoriale sull’esperienza di affollamento che ha molti punti in comune con il modello dell’attivazione e intimità di Patterson (1976). Essi hanno affermato che: a) un individuo si attiva quando il suo spazio personale viene violato; b) lo stato di attivazione spinge la persona a perlustrare l’ambiente per trovarne una spiegazione. Se l’attivazione è attribuita ad altre persone che sono fisicamente troppo vicine, l’esperienza di affollamento aumenta, la risposta soggettiva diventa più negativa di quanto era prima dell’attribuzione dell’arousal, e il soggetto agisce in modo da diminuire la condizione avversa. Per sottoporre a verifica questo modello Worcel e Teddle hanno manipolato in maniera ortogonale la densità spaziale e la distanza di interazione. (La presenza o l’assenza di figure trasparenti è stata anche variata, ma questo fattore non è qui discusso, come non sono discusse i fondamenti teorici, dal momento che neppure i risultati di questa manipolazione sono particolarmente chiarificatori in questo contesto.) La distanza interpersonale veniva manipolata variando la distanza tra le sedie nella stanza sperimentale. In tutte le condizioni, le sedie erano disposte in circolo. I soggetti in condizione di interazione stretta erano sistemati in modo tale che le gambe davanti della sedia adiacente si toccavano, mentre i soggetti nella condizione di interazione distante sedevano in sedie le cui gambe davanti erano distanti circa 50 cm. La densità veniva manipolata attraverso la grandezza della stanza. Metà dei soggetti furono sottoposti al test in una stanza ad alta densità (piccola, m 3,15 × 2,7), e metà in una stanza a bassa densità (grande, m 6,15 × 3,75). Dal momento che si pensava che le violazioni dello spazio interpersonale fossero un importante fattore preliminare, nell’esperienza di affollamento, si conviene che la distanza d’interazione, più che la densità spa-

ziale, sarebbe stata un fattore determinante nell’affollamento. I soggetti che interagivano con gli altri nelle distanze particolarmente raccocate riferirono un senso di affollamento maggiore dei soggetti che interagivano con gli altri a una distanza normale d’interazione; come anche si attendeva, la manipolazione della densità ebbe un piccolo effetto.

Worcel e Yohai (1979) fecero un’ulteriore verifica di questo modello. Essi manipolarono due fattori nello studio: la distanza di interazione e la misurazione. La manipolazione del primo fattore era simile a quella usata da Worcel e Teddle (1976), e si aspettava di stabilire se l’attivazione dovuta alla violazione dello spazio personale fosse prevalente o no durante l’esperimento. La manipolazione del secondo fattore fu prodotta nella condizione di “spiegazione di arousal”, dicendo ai soggetti che sarebbe stato introdotto nella stanza un rumore subliminale mentre eseguivano il compito loro assegnato.

Worcel e Yohai (1979) ritenevano che i soggetti nella distanza di interazione ravvicinata avrebbero mostrato maggiore attivazione fisiologica e perciò avrebbero perlustrato l’ambiente alla ricerca di un significato causale in misura maggiore dei soggetti nella condizione di interazione distante. Ritenevano inoltre che i soggetti che si credevano esposti a un rumore attivante, sebbene impercettibile (soggetti nella condizione di spiegazione dell’arousal), avrebbero erroneamente attribuito ogni elemento dell’arousal al rumore, mentre i restanti soggetti avrebbero attribuito ogni incremento di attivazione percepito all’ambiente sociale congestionato, e quindi all’esperienza di affollamento.

Nelle valutazioni dell’affollamento si ricontrò quanto previsto. I soggetti riferivano un senso di maggiore affollamento e limitazione nella condizione di interazione ravvicinata, piuttosto che in quella di interazione distante. Inoltre i soggetti che nella prima condizione avevano l’opportunità di attribuire erroneamente qualsiasi spiegazione al rumore subliminale riferirono un senso di minor affollamento e restrizione rispetto ai soggetti che in questa stessa condizione di affollamento non sapevano niente del rumore subliminale o ritenevano che questo rumore sarebbe stato rilassante.

Worcel e Teddle riscontrarono anche che i soggetti riferivano un senso di disagio più nelle condizioni di interazione ravvicinata che in quelle di interazione distante, e più nella condizione di attivazione che in quella di rilassamento o di non-spiegazione. È incerto se questi resoconti verbali riflettano o meno lo stato di attivazione fisiologica. Sfortunatamente il tentativo degli autori di monitorare una risposta fisiologica (la sudorazione palmare) durante la ricerca fu impossibile per ragioni tecniche. Così, l’effetto dell’attivazione fisiologica come variabile interveniente rimane finora senza sostegno diretto.

Arousal e comportamento prosociale. Arousal ed empatia

Batson e Coke (1983) hanno utilizzato gli elementi del modello di Schachter e Singer, per ricavare il loro modello a due stadi sulla funzione empatia del-
l’aiuto. Secondo Batson e Coke, a) l’assumere la prospettiva di una persona che è bisognosa di aiuto provoca un’attivazione fisio logica e, in molti casi, una classificazione di questa attivazione come risposta emotionale empirica alla condizione della persona in difficoltà; b) questa emozione emotiva aumenta la probabilità che l’osservatore aiuterà la persona a ridurre il suo bisogno.

Numerosi studi hanno fornito dati a sostegno del primo postulato. In particolare, gli esperimenti che coinvolgono un’altra persona “bersaglio” (una collaboratrice “complice”) che aveva il compito di rispondere a stimolazioni piacevoli, neutre o spiacerevoli (Krebs, 1975; Stotland, 1969). Inoltre in questi studi alcuni soggetti venivano invitati a guardare l’evento dal punto di vista della persona bersaglio, mentre altri soggetti non lo erano (attraverso la manipolazione del grado di somiglianza dei soggetti con il collaboratore). I risultati dimostrarono che quando i soggetti osservavano un bersaglio che presumibilmente rispondeva a uno stimolo piacevole, coloro che consideravano l’evento dal punto di vista della persona bersaglio mostravano un maggiore incremento nella sudorazione palmar e riferivano un senso di maggiore attivazione di coloro che non avevano adottato una prospettiva emotiva. Inoltre, quando la persona bersaglio presumibilmente rispondeva a uno stimolo piacevole, i soggetti descrivevano il loro stato emotionale come piacevole, mentre lo descrivevano come spiacerevole quando la persona bersaglio si supponeva rispondesse a un stimolo piacevole. Va ricordato, comunque, che sebbene le risposte elettrodermiche variassero secondo le previsioni, le misure della frequenza cardiaca e dell’attività vasomotore erano in qualche modo accordate con il previsto pattern di attivazione fisiologica (Krebs, 1975).

In un altro studio (Hygge, 1976) i soggetti dovevano osservare una donna che ascoltava in cuffia dei toni acustici. A metà dei soggetti era stato detto che i toni erano dolorosi per la donna, mentre all’altra metà era stato detto il contrario. Inoltre, metà di ciascuno di questi gruppi di soggetti pensavano che essi stessi avrebbero provato dolore se fossero stati esposti ai toni, mentre all’altra metà era spinta a credere che i toni non sarebbero stati dolorosi per loro. Hygge trovò che i soggetti mostravano un’attività elettrodermica fisiaca maggiore (misurata in base alla frequenza e all’ampiezza delle risposte di conduzione cutanea) se ritenevano che i toni fossero dolorosi, al contrario dei soggetti che pensavano che i toni non fossero dolorosi per la donna. Non ci furono differenze nella misura elettrodermica tra soggetti che pensavano che gli stimoli fossero dolorosi per loro rispetto a quelli che non lo pensavano, e questo suggerisce che l’assunzione del punto di vista di una persona esposta a stimoli spiacerevoli elicita una risposta emotiva piuttosto che una risposta allo stimolo o una risposta alla possibile dolorosità dello stimolo (Batson e Coke, 1983). Non c’erano, comunque, differenze nell’attività elettrodermica tonica (il livello di conduztanza, SCL) tra i gruppi che assumevano una prospettiva emotiva, rispetto a quelli non emotivi, differenze che ci si potrebbero attendere se l’assunzione del punto di vista di un altro in condizioni di stress aumentasse l’attivazione fisiologica personale.

Coke, Batson e Mcdavis (1978) fornirono la dimostrazione al secondo postulato del loro modello, cioè che una risposta emotiva empirica aumenta la probabilità che un osservatore aiuti una persona in condizioni di bisogno. Per esempio, nel loro primo esperimento, i soggetti ascoltavano una presunta trasmissione radiofonica in cui si descriveva una collega che aveva appena tragi camente perso entrambi i genitori in un incidente automobilistico. Una risposta emotiva empirica fu indotta in metà dei soggetti istruendoli a immaginare come la coetanea dovesse sentirsi nella situazione, mentre venne diminuita una risposta emotiva dell’altro metà dei soggetti istruendoli a osservare le tecniche usate nella trasmissione. Inoltre, a tutti i soggetti fu data una pillola che doveva avere effetto durante la loro partecipazione ad uno studio immediatamente successivo di altro genere. La pillola, che veniva somministrata immediatamente prima che i soggetti venissero esposti alla trasmissione radiofonica, veniva descritta a metà dei soggetti come avente un effetto collaterale rilassante, mentre all’altra metà venne detto che aveva un effetto attivante. (In effetti la pillola era una sostanza inerte senza effetti collaterali, cioè un placebo.) Dopo aver udito la trasmissione i soggetti avevano l’opportunità di aiutare la studentessa che si supponeva avesse appena perso i genitori (ad esempio facendo commissioni per lei).

Coke e colleghi ipotizzarono che i soggetti che venivano indotti ad assumere il punto di vista di una persona in stato di bisogno avrebbero provato un’estensione fisiologica maggiore di quella che avevano focalizzato l’attenzione sugli aspetti tecnici della trasmissione. Inoltre, in accordo con Schachter e Singer (1962), questi ipotizzarono che quei soggetti che adottarono una prospettiva emotiva e che pensavano che la pillola ingerita li avrebbe rilassati, avrebbero avuto un senso maggiore. Ciò, da coloro che si erano posti in una prospettiva emotiva e che credevano che la pillola li avrebbe attivati, si aspettava che attribuissero il loro stato fisiologico alla pillola piuttosto che alla loro empatia. Così non ci si aspettava che questi soggetti avrebbero provato una risposta emotionale che si era ipotizzato motivasse all’aiuto. I dati ottenuti risultarono in accordo con queste previsioni.

Globalmente, i dati forniti dal modello di Batson e Coke (1983) su empatia e comportamento prosociale dimostravano che l’empatia con una persona bisognosa di aiuto aumenta il senso di attivazione di spiacerevolezza e aumenta le azioni prosociali. Se l’adozione di una prospettiva emotiva dia luogo all’attivazione fisiologica reale, e se l’attivazione fisiologica reale (in contrasto con la percezione dell’attivazione o di uno stato d’animo spiacerveole) sia necessaria per la facilitazione di azioni prosociali, sono questioni ancora in sospeso.
Arousal e interventi di emergenza


Gli osservatori, ne deducono i Piliavin, possono ridurre questa attivazione aiutando la persona, interpretando la situazione come se non ci fosse bisogno di aiuto, o abbandonando la situazione stessa.

Dati concordanti con il modello dei Piliavin (come con quello di Batson e Coke) sono forniti da uno studio di Harris e Huang (1973), i quali inscenarono un incidente mentre i soggetti eseguivano un problema di matematica. L’incidente coinvolgeva un collaboratore, che entrava nella stanza con un ginocchio fuso, inciampava in una sedia cadendo sul pavimento e gridava per l’apparente dolore. Alcuni dei soggetti furono indotti a misattribuire l’eventuale attivazione provata a un rumore avversivo. Secondo il modello proposto da Schachter e Singer (1962), si aspettava che solo i soggetti che non potevano misattribuire l’attivazione fisiologica avvertita al rumore avversivo avrebbero valutato la loro attivazione in termini diversi dalla condizione di disagio del collaboratore e avrebbero ridotto l’aiuto. Come ci si aspettava, non ci furono differenze nel resoconto soggettivo del livello di attivazione, ma si trovarono le differenze attese, nell’attribuzione dei soggetti, delle cause dell’arousal percettivo e nella prestazione d’aiuto. I soggetti ai quali era stato indicato il rumore avversivo come plausibile causa della loro attivazione attribuivano più al rumore il loro stato soggettivo di attivazione e aiutavano di meno degli altri soggetti.

Piliavin, Dovidio e altri (1981) osservano: “Il modello, come era stato originariamente formulato, era molto vago circa la natura del costrutto fondamentale di arousal. Quando lo abbiamo sviluppato, noi abbiamo implicitamente accettato il concetto di arousal unitario e indifferenziato contenuto nel modello di Schachter (1964). (Gli psicologi sociali, che sono scarsamente informati circa la complessità del funzionamento del sistema nervoso centrale, comunemente accettano questo come il solo tipo di sistema di attivazione.) Così il nostro assunto era che l’attivazione di per sé sarebbe stata attivante ma non direzionale.” Essi sostennero che il loro costrutto dell’attivazione si riferiva esplicitamente a una risposta di difesa, che identificavano col secondo sistema di attivazione di Routtenberg (1968) (il sistema degli effetti incentivazionali) e con la nozione di Lacey di “ritardo ambientale” (Lacey, 1967): “Più precisamente, rispetto ai due tipi di sistemi attivazionali, noi siamo ora dell’opinione che l’attivazione emotionale, in termini di reazione di difesa, è con più precisione quello che noi intendevamo riferendoci a questa forza motivazionale.”

L’accompagnare la risposta di difesa, il secondo sistema di attivazione di Routtenberg e la nozione di rifiuto ambientale può essere messo in discussione sulla base dell’esistente letteratura fisiologica (Cacioppo e Petty, 1983b; Fowles, 1980), ma la specificazione dell’attivazione, nel modello dei Piliavin, come risposta di difesa, indica un tentativo da parte degli psicologi sociali di portare i loro concetti astratti in linea con quello che si conosce sul sistema nervoso umano. La risposta di difesa è caratterizzata da una diminuzione nella sensibilità degli organi di senso, vasocostrizione sia negli arti che nella testa, aumento della frequenza cardiaca e atteggiamenti posturali di allontanamento dallo stimolo (Lynn, 1966). Essenzialmente, la risposta difensiva serve a proteggere l’organismo da una stimolazione improvvisa e intensa. Ma alcuni di questi cambiamenti fisiologici (ad esempio la frequenza cardiaca accelerata) potrebbero verificarsi a causa di altri fattori. Questo punto può essere chiarito con il seguente esempio.

Gaertner, Dovidio e Johnson rappresentavano una situazione di emergenza in un circuito televisivo chiuso. Soggetti di sesso femminile ascoltavano la descrizione dello sperimentatore di una pila di sedie in equilibrio precario e vedevano lo sperimentatore uscire dall’inquadratura della telecamera per metterle a posto. I soggetti allora udivano un rumore di schianto e vedevano nell’inquadratura della telecamera lo sperimentatore e le sedie cadere. Lo sperimentatore giaceva immobile, come se avesse perso conoscenza. La frequenza cardiaca dei soggetti veniva monitorata di continuo durante la seduta. Gaertner e colleghi osservarono che la frequenza cardiaca dei soggetti diminuiva durante la seduta da 83,68 battiti per minuto (bpm) in base line a 77,32 bpm nella situazione di emergenza. Sebbene Piliavin, Dovidio e altri (1981) ipotizzino che questa diminuzione sia attribuibile a una “risposta di orientamento”, essa sembra essere dovuta all’adattamento dei soggetti al contesto del laboratorio e al compito richiesto. Durante i 10 secondi immediatamente dopo la situazione di emergenza, la frequenza cardiaca dei soggetti ritornò vicina al livello di base (82,07 bpm), e per gli autori questo conferma la loro previsione riguardo alle situazioni di emergenza e all’attivazione (risposte di difesa). Naturalmente una spiegazione più semplice, basata sul concetto dell’integrazione somatocardica di Obrist (1981), è che l’elevazione della frequenza cardiaca rifletteva le richieste motorie come se i soggetti fossero preparati a intervenire (o lottare con se stessi circa ciò che avrebbero potuto fare) nella situazione di emergenza. Si può supporre che l’aumento della frequenza cardiaca non sia servito per dar inizio a un intervento d’aiuto alla vittima, ma piuttosto sia stato conseguenza della loro decisione di aiutarla. Infatti Piliavin e colleghi (1981) notarono che l’89 per cento dei soggetti intervennero entro 11 secondi dall’incidente.
In conclusione, il modello dell’intervento di emergenza dei Piliavin ha come base la teoria di Schachter e Singer (1962) sulla plasticità emozionale, ma nella sua forma revisionata si discosta dal primo lavoro di Schachter e Singer. Un profilo di vari indicatori fisiologici (frequenza cardiaca, attività vasomotoria negli arti e nella testa), piuttosto che una singola misurazione fisiologica (EDA), è necessario tuttavia per fornire una verifica più definitiva all’ipotesi di Piliavin, Dovidio e altri (1981) riguardo la mediazione fisiologica nell’intervento di emergenza.

Stati pulsionali in psicologia sociale

In psicologia sociale l’arousal è concepito come avente un effetto simile-pulsionale sul comportamento. Se un fattore sociale provoca effetti pulsionali nell’esecuzione di un compito, se ne desume l’esistenza di un sottostante stato di attivazione. Prenderemo ora in esame il concetto di pulsione (drive) e due settori significativi in psicologia sociale in cui tale nozione è stata usata.

Il termine drive è stato introdotto per la prima volta in psicologia da Woodworth nel 1918 (riportato da Berkowitz, 1969b) e si riferisce a uno stato di eccitamento interno o arousal che spinge l’organismo all’azione. Quando un organismo viene depravato di risorse per un lungo periodo di tempo, le sensazioni interne, come quelle provenienti dalle contrazioni dello stomaco in un organismo che ha bisogno di cibo, motivano automaticamente l’organismo all’azione fino a che viene trovato ciò che può soddisfare questi bisogni.

Al concetto di pulsione venivano attribuiti all’inizio effetti sia direttivi che energetici sul comportamento. In seguito la pulsione è stata considerata come ciò che stimola un comportamento e che può essere o meno fondamentale per la riduzione del bisogno (costituente la pulsione) specifico dell’organismo. Le caratteristiche basilari del concetto di pulsione sono state riassunte da Berkowitz (1969a) come derivanti da condizioni di deprivazione o dall’intrusione di stimoli nocivi. Le conseguenze necessarie biologiche spingono l’organismo all’attività; quando viene eliminato lo stato di deprivazione o allontanato lo stimolo disturbante sia lo stato di pulsione che l’attività diminuiscono. Stimoli prima neutri che sono associati con il soddisfacimento del bisogno diven- tano rinforzanti, mentre stimoli che erano associati con l’attivazione di stati pulsionali avversivi vengono evitati. L’apprendimento entra in funzione per guidare l’attività accumulata dagli stimoli pulsionali.

Una delle più importanti affermazioni euristiche che emergono dal lavoro sulla pulsione è quella che a volte viene definita l’equazione di Hull-Spence: potenziale di reazione = pulsione × abitudine.

Secondo questa equazione, un aumento del livello di pulsione mette in atto risposte dominanti verso uno stimolo (le risposte più alte nella gerarchia, per collegamento biologico o per precedente apprendimento) e diminuisce la probabilità di una risposta subordinata (quelle più basse nella gerarchia di risposte allo stimolo). Questo implica che un aumento nella pulsione facilita la realizzazione di compiti facili, che per definizione hanno più risposte dominanti "corrette" e "sbagliate" nella gerarchia dell’esecutore; parimenti un decremento della pulsione impedisce l’apprendimento di compiti difficili che per definizione hanno più risposte dominanti "sbagliate" che "corrette" nella gerarchia dell’esecutore.

Sono state proposte anche altre spiegazioni, relative alla pulsione a eseguire compiti complessi. Malmo (1958), per esempio, ha sostenuto che la difficoltà del compito è in relazione diretta con la pulsione e che la pulsione ha un rapporto a U invertita con il potenziale di reazione: "In base all’effetto della difficoltà del compito su una D (drive) sconosciuta e incontrollata nei precedenti esperimenti, è possibile che i risultati fossero prodotti direttamente da un aumento della D piuttosto che da una maggiore potenza relativa di risposte erronee e competitive (...). Ciò comporta, ovviamente, il fatto che, al di là del punto ottimale, D indebolisce più che rinforzare la risposta."

Entrambi tali affermazioni possono spiegare gli effetti osservati nella realizzazione di compiti semplici e complessi, ed è difficile distinguere gli effetti comportamentali previsti di questi due modelli. Sarason (1956), per esempio, ha usato un compito di apprendimento meccanico, in una situazione incenti- vante, nel quale ebbero i migliori risultati soggetti con elevata ansia manifesta rispetto a soggetti con bassi livelli d’ansia.

Le ipotesi alla base di questa ricerca erano che i primi soggetti stavano lavorando in condizioni pulsionali maggiori rispetto ai secondi, e che l’apprendimento meccanico era un compito facile. Sarason conclude che aumentando gli incentivi coi quali i soggetti lavoravano avrebbe potuto distinguere tra i due modelli di pulsione.

Secondo il modello di Hull-Spence i soggetti con elevata ansia manifesta, al contrario di quelli con bassa ansia, avrebbero continuato ad avere i risultati migliori nel compito di apprendimento meccanico dal momento che era semplice, mentre il modello che mette in relazione indiretta la pulsione con l’esecuzione prevede che un aumento dell’incentivo (e quindi della pulsione) possa provocare un’inversione di tale effetto portando i soggetti poco ansiosi a un livello ottimale di pulsione e i soggetti più ansiosi oltre il livello ottimale. Gli studi di Sarason hanno fornito la dimostrazione del modello di relazione a U invertita tra pulsione ed esecuzione. Taylor (1956), comunque, ha affermato che l’aumento del livello di pulsione, per esempio attraverso sostituzioni dell’incentivazione, può danneggiare la prestazione perché aumenta le risposte in competizione sopra la soglia o perché provoca ansia che serve da stimolo per l’insorgere di risposte incompatibili con l’esecuzione del compito. L’affermazione di Hull-Spence difesa da Taylor è più teoricamente sviluppata delle due e ha stimolato la maggior parte delle ricerche in psicologia sociale.
Effetti simili-pulsionali delle azioni contrastanti con gli atteggiamenti


In uno studio simile Palla e Pittman (1972) esaminarono la prestazione di soggetti in condizione di alta e bassa dissonanza in compiti semplici e diffi coli dello Stroop Test. I soggetti eseguivano un compito noioso consistente nel pronunciare delle parole così come apparivano su un cilindro rotante. Dopo cinque minuti fu detto loro che dovevano eseguire lo stesso compito usando le stesse parole per altri trenta minuti. Metà dei soggetti furono indotti a essere d'accordo nella realizzazione di questo compito, dal momento che si lasciava loro l'impressione di essere personalmente responsabili della scelta a favore dell'esecuzione (gruppo ad alta dissonanza), mentre agli altri non fu offerta alcuna scelta tranne quella di eseguire il compito (gruppo a bassa dissonanza).

Durante le varie parti dello Stroop Test, i soggetti del gruppo ad alta dissonanza, al contrario di quelli a bassa dissonanza, aumentavano il numero di errori nell'esecuzione delle prove difficili e aumentavano le risposte corrette nell'esecuzione dei test facili. Kiesler e Palla (1976) hanno passato in rassegna alcuni studi complementari indicanti che la dissonanza cognitiva produce effetti simili-pulsionali sull'apprendimento e la prestazione. Si può dire poco circa le relazioni tra gli effetti comportamentali simili-pulsionali della dissonanza, gli effetti soggettivi della dissonanza e le conseguenze fisiologiche della stessa, dal momento che l'affermazione degli psicologi sociali che l'ope razionalizzazione di ciascuna di esse coava altamente ha ostacolato la ricerca su queste relazioni (Fazio e Cooper, 1983; Kiesler e Palla, 1976).

Gli effetti simili-pulsionali della semplice presenza di altri

Nel 1898, Triplett affermava che le persone eseguivano un semplice compito motorio più rapidamente in presenza di altri che da soli. Questo effetto ha determinato uno dei più basilari principi nella psicologia sociale: la società di per sé può influenzare la risposta di un individuo a uno stimolo intrinsecamente non sociale. I successivi decenni di ricerca sull'effetto della presenza di altri hanno prodotto un insieme confuso di studi. In certe occasioni, la sola presenza di uno spettatore o di un rivale aumenta il rendimento di un individuo in un certo compito, mentre in altre occasioni essa interferisce con l'esecuzione individuale. Zajonc (1965) risolse la confusione in tale area notando che la presenza dell'altro facilita però la risposta più facile (cioè la dominante) e non la più corretta. Zajonc concluse che il meccanismo in base al quale la presenza di altri aumentava il livello generale di stimolo del soggetto era l'attivazione fisiologica, sebbene tale affermazione dovesse essere oggetto di discussione.

La principale fonte di dati su cui Zajonc si fondava era in relazione con gli effetti della densità di popolazione sull'attività adrenocorticolare negli animali. La teoria di Zajonc provocò un'ondata di ricerche. In uno studio dimostrativo Zajonc e Sales (1966) presentavano delle liste di vocaboli ai soggetti, il cui compito era di identificare ogni parola non appena veniva presentata. Alcune delle parole che i soggetti vedevano venivano presentate ripetuta mente, mentre altre erano presentate meno frequentemente. Questo fu fatto per manipolare il meccanismo di abitudine associato a ogni parola. Zajonc e Sales, che stavano lavorando sul modello di Hull (potenziale di risposta = stimolo × abitudine), chiesero ai soggetti di identificare quale parola veniva presentata al tachistoscopio, in condizioni in cui i soggetti stessi erano osservati (alta stimolazione) o da soli (bassa stimolazione). In effetti nessuna parola veniva presentata al tachistoscopio, ma Zajonc e Sales si aspettavano, e riscontrarono, che i soggetti affermassero di aver visto le parole abitudinali (quelle viste frequentemente prima del compito di pseudoriconoscimento) più frequentemente e le parole non abitudinali meno frequentemente quando erano osservati rispetto a quando erano da soli.

Geen e Gange (1977) hanno esaminato i limiti dell'interpretazione di Zajonc della facilitazione sociale come fattore motivante e hanno trovato che essa ha resistito bene alla prova di dodici anni di ricerca. Per esempio, hanno riscon
Capitolo tredicesimo

L'apprendimento di coppie associate, ma aiuta la memoria a lungo termine; migliora l'esecuzione di compiti semplici e danneggia l'iniziale esecuzione di compiti complessi; e con la pratica e la padronanza di compiti complessi la presenza di altri facilita piuttosto che inibire l'esecuzione.

Una componente della teoria originale, cioè la componente attivazione fisiologica, sembra comunque necessaria per chiarificare e perfezionare: “Sembrerebbe che la facilitazione sociale sia prima di tutto il risultato di un'attivazione emotionale che accompagna il timore della valutazione, che è invece una reazione all'aspettativa che il contesto sociale provocherà risultati negativi e costituirà una minaccia per la persona” (Geen e Gange, 1977, p. 1283).

Fino a oggi, le estensioni del modello di Zajonc (Cottrell, 1972) e le teorie relative sugli effetti della facilitazione sociale (Sanders, 1981) si sono focalizate sulle conseguenze restrittive degli altri allorché un individuo deve utilizzare gli elementi disponibili per il raggiungimento di un obiettivo. Geen e Gange (1977) attribuiscono questi effetti cognitivi all’ “attivazione emotionale” e all’ “attivazione cognitiva”. Come essi fanno notare, i ricercatori hanno ampiamente ignorato il grado di covariazione tra la risposta fisiologica e le misurazioni della prestazione a un livello empirico, sostenendo semplicemente che gli effetti simili-pulsonali, l’attivazione emotionale e l’attivazione cognitiva variano tutti assieme con il generale livello di attivazione fisiologica (vedi Moore e Baron, 1983).

Sebbene in questo campo nessuno studio sia mai interessato delle specifiche correlazioni di misure tra le variabili fisiologiche e quelle di prestazione, una misura fisiologica è stata registrata in 22 esperimenti separati sulla facilitazione sociale (Moore e Baron). I dati sono difficili da interpretare, dal momento che la maggior parte degli studi fu condotta partendo dall’assunto che una qualsiasi misurazione fisiologica era valida quanto un’altra (o parecchie altre) purché fosse un indice dell’attivazione fisiologica (Lacey, 1967).

In otto di queste ricerche, una misura della sudorazione palmar fu ottenuta usando sia l’indice di sudorazione palmar (palmar sweat index o PSI), che fornisce un’indicazione approssimativa del numero di ghiandole sudoripare attive sulla punta delle dita, sia la tecnica della “bottiglia di sudorazione”, che comporta la misurazione della conductività dell’acqua distillata dopo l’immersione della mano in essa per pochi secondi. Queste misurazioni della sudorazione palmar sono in qualche modo fastidiose, ma comunque la presenza di altri è stata associata con una maggiore sudorazione palmar precedente al compito in quattro delle otto ricerche di questo tipo. Nell’unico lavoro che si inteso a registrare al PSI (o una qualche funzione fisiologica, a seconda del caso) durante il compito, non è stato trovato alcun cambiamento nell’attività di spettatori nel livello di senza di spettatori provocò aumenti significativi nell’attività, ma il livello di

Psicofisiologia sociale

conduzione cutanea e la frequenza cardiaca, che pure erano stati misurati in questo lavoro, non furono alterati in modo significativo dalla presenza di spettatori.

In realtà, dei dodici esperimenti, solo otto fornirono una qualche prova di un incremento in una qualunque risposta fisiologica in funzione della presenza di un altro, mentre invece uno ne indicò una diminuzione. D’altra parte, la scoperta di Carver e Scheier (1981) che la sudorazione palmaria era elevata quando i soggetti si preparavano a un compito, anzi che quando eseguivano il compito, è stata di interpretazione pubblica, necessaria di riprove e di approfondimenti, dal momento che le loro osservazioni sono contrarie a quanto si sarebbe aspettato in base al modello di Zajonc (1965) sulla pulsione, attivazione e facilitazione sociale. Si noti inoltre che nessun lavoro ha mai messo alla prova l’originale teoria di Zajonc che la sola presenza di altri provochi un’attivazione fisiologica tramite il suo impatto con l’attività adrenocorticolare.

Attoazione fisiologica, indicatori per ricerche causali e pulsione in psicologia sociale: sommario e conclusioni

L’attivazione fisiologica come concetto euristic in psicologia sociale si riferisce all’intensità del funzionamento del sistema nervoso centrale e si è stabilito che ha effetti cognitivi e motivazionali e anche diffusi effetti fisiologici. Al livello cognitivo, l’attivazione fisiologica viene considerata inizialmente come un consistente cambiamento nell’investimento di energia che stimola l’individuo alla ricerca di una spiegazione per tale cambiamento (Schachter e Singer, 1962). L’ipotesi è che, se dopo l’introduzione di un fattore sociale si trova che un soggetto cerca nell’ambiente lo stimolo che potrebbe aver provato in lui tale attivazione, allora deve esistere un’attivazione fisiologica. Worchel e Yohai (1979) concludono: “Mentre da un punto di vista teorico sarebbe ‘onesto’ e interessante dimostrare che interviene l’attivazione (fisiologica), probabilmente non è indispensabile (...) L’attivazione contestuale stimola probabilmente il processo di attribuzione (la ricerca della causa) solo nel caso che essa sia percepita dall’individuo.”

C’è comunque disaccordo sul fatto che l’attivazione fisiologica provoca la ricerca causale sia solo una e di tipo diffuso (Schachter e Singer, 1962), o debba essere necessariamente percepita in maniera precisa dall’individuo (Fazio e Cooper, 1983). D’altra parte si sono viste chiare dissociazioni tra gli effetti cognitivi e fisiologici degli “stimoli attivanti” (Zillmann, 1983), che indicano un collegamento più limitato tra l’attivazione riferita e l’attivazione fisiologica generalizzata, periferica, di quanto si è tradizionalmente ritenuto in psicologia sociale.

A un livello motivazionale, l’attivazione fisiologica è stata considerata come la base oggettiva di uno stato generalizzato di pulsione (Kiesler e Palk, 1976;
Capitolo tredicesimo

Psicofisiologia sociale

Inoltre, stanno aumentando le indagini svolte insieme da psicologi sociali e da psicofisiologi dal momento che l'esperienza nelle due discipline, e la richiesta per questo tipo di indagini è unificabile e reciprocamente utile.

Da questa iniziativa interdisciplinare, la psicofisiologia sociale sta riaffiorando in una forma forse meno clamorosa (Schachter e Singer, 1962), ma più completa che non nei precedenti decenni (Cacioppo, Petty e Andersen, 1988).

Bibliografia


— (a cura di), Perspectives in Cardiovascular Psychophysiology (Guilford, New York 1982a).


— (a cura di), Social Psychophysiology: a Sourcebook (Guilford, New York 1983a).


Zajonc, 1965). L'ipotesi è che se si nota che l'introduzione di un fattore sociale compito complesso, allora si può sostenere che esiste un diffuso stato di attivazione fisiologica. I commenti di Kiesler e Pallak (1976) sono significativi: "Noi usiamo i termini motivazione e attivazione liberamente e in modo intercambiabile (...) Riconosciamo la continua controversia riguardo questi concetti in psicologia sperimentale (...) Il nostro semplicisticо uso dei termini non implica una presa di posizione teorica da parte nostra, ma riflette lo stato attuale della psicologia sociale."

A livello fisiologico si ritiene che le attivazioni dei processi organici dipendenti dal sistema nervoso centrale e periferico vengano simultaneamente. Con conseguenza, non si è considerato importante quale misura psicologica fosse usata per stabilire il livello di "attivazione" di una persona, né raccogliere più indici fisiologici di attivazione (vedi Shapiro e Cramer, 1969).

Le diverse ipotesi, che l'attivazione fisiologica sia riflessa nel coinvolgimento generale e diffuso del sistema nervoso centrale e periferico o invece in una più ristretta mobilizzazione del sistema nervoso autonomo, sono state seriamente criticate (Cacioppo e Petty, 1981a; Lacey, 1967). Se si pensa che l'attività fisiologica possa variare in funzione di un fattore sociale, ciò dipende in parte da quale effettore fisiologico viene monitorato e da quali parametri vengono presi in considerazione.

Per esempio, Moore e Baron (1983) riportano che la sola presenza di altri di solito non ha effetti sulla frequenza cardiaca, ma talvolta ha un effetto eccitatorio sulle risposte di conduttanza cutanea. L'insieme degli effetti fisiologici della presenza di altri è difficile da stabilire in base a questi dati, dal momento che raramente, in una qualsiasi ricerca, viene esaminato più di un parametro.

Sebbene si sia spesso sostenuto che le componenti cognitive, motivazionali e fisiologiche delle indagini psicofisiologica-sociali siano isomorfe, esse in realtà sono solo parzialmente sovrapponibili (Cacioppo e Petty, 1982b, 1986).

Trattare continuamente tali concetti come sinonimi quando, di fatto, essi possono essere teoricamente distinti e i loro indici operativi non covariano in maniera rilevante, ostacola una ricerca più precisa e la costruzione di una teoria.

In conclusione, il concetto di attivazione è stato molto importante, ma è stato spesso abusato in psicologia sociale: esso è infatti uno dei concetti meno precisi, dal punto di vista teorico, nella disciplina. Le misurazioni che vanno dai profili dell'attività fisiologica agli errori di attribuzione, che non offrono buone correlazioni, sono state usate recentemente come operazionalizzazioni dell'attivazione in psicologia sociale. Viene sempre più riconosciuto dagli psicofisiologi sociali la necessità di un linguaggio più specifico di attivazione operazionale e motivazionale associati quando si indagano i processi fisiologici, sintomatologici e motivazionali associati al sociale, e la necessità di parte degli psicofisiologi di prendere in considerazione l'effetto dei fattori sociali.
Capitolo tredicesimo


Jones M.R. (a cura di), Nebraska Symposium on Motivation (University of Nebraska Press, Lincoln 1958).


Leiderman P.M. e Shapiro D. (a cura di), Psychobiological Approaches to Social Behavior (Stanford University Press, Stanford 1964).


Muirstein B. (a cura di), Theories of Attraction and Loe (Springer, New York 1971).


Pittman E.S., Attraction of Arousal as a Mediator in Distance Reduction, J. exper. soc. Psychol., vol. 11, 73-83 (1975).


Sarason I., Affective Anxiety, Motivational Instructions, and Failure on Serial Learning, J. exper. Psychol., vol. 51, 253-60 (1956).


Adams H. J., 211, 218
Agras S., 96, 132
Ahern L., 154, 168
Aine C., 35, 51
Azuriguerra J., 211, 214
Azikal H. S., 131 sg., 165, 167, 211, 215
Azevedo J. A., 173, 211
Alexander F., 186, 211
Allison T., 25, 28, 49, 66, 91
American Psychiatric Association, 174, 176, 179, 182, 211
Andersen B. L., 221, 243, 245
Anderson J. R., 100, 131
Anseaux M., 92
Anker M., 53
Appley M. H., 131 sg., 243 sg.
Argyle M., 203, 211
Arnold M., 165, 167 sg., 211
Arnold W. J., 165
Aronson E., 243 sg.
Asberg M., 174, 217
Atkinson J., 30, 49
Austin M. L., 152, 167
Averill J. R., 135 sg., 167, 176, 215
Ax A. F., 96, 131, 151 sg., 161, 165
Axford J. G., 32, 51
Bachrach A. J., 211
Bakkaus F. I., 174, 185, 211
Bagot J.-D., 53
Bakker D. J., 43, 49, 91 sg.
Barber C., 30, 32, 49, 53
Barchas J. D., 118, 166
Bahrbeau-Braun J., 48 sg., 49
Barlow D. H., 208, 211, 214
Baron R. S., 240, 242, 245
Barrett G., 39, 49
Barrucand D., 210, 215
Bashore T. R., 50
Basmajjan J. W., 208, 211
Bateman D. E., 186, 215
Bates S., 167, 169
Baton C. D., 233, 243 sg.
Baton C. S., 231 sg., 234, 243
Baum A., 210, 243
Baumgartner G., 53
Bemont J. G., 49, 53
Beck A. T., 206, 211
Begleiter H., 49, 53, 90, 92, 183, 211, 217
Beinman J., 179, 211
Bellack A. S., 211, 218
Benson P. J., 33 sg., 51
Bentin S., 40, 43, 49
Berger M., 180, 215
Berger P. A., 53
Bergin A. E., 131 sg., 165, 167, 212 sg., 217
Berkowitz C., 131, 133, 212, 217, 236, 243, 245
Berscheid E., 226 sg., 243
Berts G. H., 113, 117, 121, 131
Bickford A. F., 186, 215
Binde D., 137, 165
Bipus W., 91
Birk L., 185, 212
Bisti S., 32, 52
Bjorkman G., 25, 53
Black A. H., 213, 216
Black P., 131 sg., 165, 169
Blaumore C. B., 32, 49, 166, 168
Blanchard F. B., 208, 212, 217
Bleecker E. R., 191, 213
Blevins G., 152, 166
Blinkhorn S. F., 46, 49
Blizzard R., 215