
11

The Metacognition of Bias Correction: Naive Theories of Bias and the Flexible Correction Model

Duane T. Wegener, Richard E. Petty and Meghan Dunn

In many situations, we want to assess the "true" qualities of some target person, object, or issue. Is Sally really the best job candidate? Is the National Bank the right choice for my mortgage? Is George truly guilty of bank robbery? Unfortunately, making accurate or otherwise appropriate judgments can often turn out to be rather difficult because many kinds of biasing factors – such as being in a bad mood – can unduly influence our perceptions. Especially when attempting to be accurate, people would presumably want to prevent such biasing factors from having an impact on their judgments. If people attempt to remove the influence of biasing factors, how do they do so? What metacognitive processes do people use to ensure that their assessments of and feelings toward targets are "accurate" or "legitimate"?

In brief, we believe that corrections (i.e. attempts at removing bias from assessments of targets) are often the result of people consulting their naive theories (beliefs) of how potentially biasing factors have influenced (or might yet influence) their views of the target. As we explain later in the chapter, this Flexible Correction Model (FCM) differs from previous models of bias correction in that a view of corrections based on perceivers' naive theories of bias allows for a more flexible set of adjustments to one's assessment of targets.

Corrections have been discussed or studied in a variety of areas including attribution, context and priming effects, mood and judgment, impression formation, and stereotyping (see Wegener & Petty, 1997, for a review). When work on the FCM began in 1990 (reported in Wegener & Petty, 1992; Petty & Wegener, 1993), correction phenomena had been discussed in general terms and for certain isolated research domains, and conceptual developments were generally aimed at explaining the phenomena in those particular domains (for a good example, see the work on attributional correction processes, Gilbert, Pelham, & Krull, 1988). In the context-effect (priming) literature, however, some rather explicit and detailed models of correction phenomena were developed (e.g. Martin's 1986 set-reset model). Because of this, we begin our discussion of correction phenomena by reviewing the models developed to account for context effects. Then, we outline the postulates of the Flexible Correction Model (Petty & Wegener, 1993; Wegener, 1994; Wegener & Petty, 1995, 1997), which is a general theory of correction – applicable to the multitude of situations in which corrections occur (for a comprehensive review, see Wegener & Petty, 1997).

In outlining the FCM, we first review in brief some of the initial experiments that tested that flexible correction view. Next, we present the details of some new experiments guided by the FCM framework. We conclude by discussing some directions for future work on correction processes in general and theory-based corrections in particular.

Priming/context effects and correction: initial models of correction

Corrections have recently played a prominent role in the area of context effects on impression formation and social judgment. Many kinds of factors are objectively irrelevant to the true qualities of targets (e.g. mood states of the perceivers, unrelated information that serves to activate concepts in memory, etc.), but such factors have often been found to influence ratings of targets (e.g. Forgas & Moylan, 1987; Higgins, Rholes, & Jones, 1977; Petty, Schumann, Richman, & Straf, 1993; Strull & Wyer, 1980). In this literature, the direction of effects created by irrelevant contexts is described as either assimilation (i.e. making judgments of targets more like reactions to the context) or contrast (i.e. making judgments of targets less like reactions to the context).

Many discussions of assimilation and contrast focused on the distribution of contextual stimuli as an explanation for these distortions of judgment (e.g. Helson, 1964; Parducci, 1965; Sherif & Hovland, 1961; see also Herr, 1986; Herr, Sherman, & Fazio, 1983). Recently, however, researchers have found evidence of both assimilation and contrast effects even when using the same contextual stimuli. For example, Newman and Uleman (1990) primed subjects with either positive or negative traits and later tested whether traits consistent or inconsistent with those primes provided better cues to recall of sentences containing material related to the primes. When people could remember any of the priming (contextual) stimuli, traits inconsistent with the initial primes made the best recall cues for the sentences; but when people could not remember the same priming stimuli, traits consistent with the primes made the best recall cues. This suggests that perceivers initially made assessments of the targets that were contrasted to the primes when there was memory of the primes, but that were assimilated to the primes when there was no memory for the primes (see also Lambert, Higgins, & Bargh, 1987). Strack, Schwarz, Bless, Köbler, and Wänke (1993) showed the same type of effect using a judgment task and a manipulation of awareness of the priming episode. When Strack et al. (1993) reminded participants of the priming task before an impression-formation task, impressions of targets were contrasted away from the primes, but when...
participants were not reminded of the priming task, impressions of targets were assimilated to the primes (see also Martin, 1986; Schwarz, Strack, & Mai, 1991). After describing the "partialling" accounts of such effects, we discuss the explanation provided by the FCM.

The set-reset model

According to the set-reset model, which was developed in the context of priming effects on perceptions of ambiguous targets (Martin, 1986; Martin & Achee, 1992; Martin, Seta, & Creila, 1990), one's representation of a target might include both positive and negative elements. When a context primes a set of thoughts (reactions), some of the reactions to this context might overlap with the representation of the target - making the target seem more like the context (referred to as "setting"). When people realize that some of their supposed reactions to the target were actually reactions to the contextual stimuli, however, they attempt to avoid using those thoughts in forming their impression of the target (i.e. they try to be accurate). In doing so, they attempt to "partial out" (subtract) the primed reactions (referred to as "resetting"). When this happens, people might mistakenly subtract out some of the elements of their true reaction to the target (because the reactions to the target might seem similar to the reactions to the context). Because of this, contrast away from the contextual stimuli can result. Whereas setting leads to assimilation to the primed reaction, resetting might lead to contrast or to "judgments showing no effect of the prime or even a reduced assimilation effect" compared to situations in which "setting" occurs (Martin & Achee, 1992, p. 212). Although these various outcomes (contrast, no effect, or reduced assimilation) are possible, it is important to note that the partialling "corrections" that lead to these outcomes are all in the same direction - away from initial reactions to the context. The only way in which they differ is the extent of the correction for this perceived overlap.

A variety of results can be interpreted as consistent with this perspective (see Martin & Achee, 1992, for a recent review). For example, Strack, Martin, and Schwarz (1988) found that students' responses to questions about frequency of dating and life satisfaction were highly correlated when the life satisfaction question followed the dating question (i.e. happiness with dating overlapped with happiness with life and "setting" produced assimilation). When a preface to the questions identified the questions as related to "two aspects of life," however, the correlations between responses to the two questions was significantly smaller (i.e. a "given-new" communication rule, Grice, 1975, was invoked and "resetting" removed overlap between the two responses; see also Schwarz, Strack, & Mai, 1991).

Because resetting includes an additional step beyond setting (i.e. resetting involves subtraction of elements activated by the context) reset contrast effects presumably require more cognitive effort than assimilation effects. Thus, Martin and his colleagues (e.g. Martin, 1986; Martin et al., 1990) have suggested that reset "corrections" are influenced by motivation and ability to engage in effortless cognitive activities. For instance, Martin (1986) asked research participants to form an impression of an ambiguous target after a "blatant" priming task (e.g. generating self-relevant statements indicative of a positive or negative mood). Martin (1986) found assimilation of impressions to the priming task when participants believed that the priming task was not yet finished at the time impression ratings occurred, but found contrast when they believed that the priming task had been finished before the impression task. Martin (1986) reasoned that people in the task-interrupted conditions would be more likely to continue to think about the priming task than those in the task-completed conditions (because of a "Zeigarnik" effect; Zeigarnik, 1938) and thus would be less able to avoid the primed thoughts in forming their impressions. More directly, Martin et al. (1990) also found that reset "corrections" did not occur in task-completed conditions when respondents were distracted (Petty, Wills, & Brock, 1976) during the impression-formation task (i.e. assimilation to the primes occurred when respondents were distracted during the impression-formation task, but contrast occurred when respondents were not distracted - as in Martin, 1986).

Using the task-completed conditions similar to Martin (1986), Martin et al. (1990) found that motivational variables also determined whether or not resetting would occur. That is, Martin et al. found assimilation under conditions where past research had shown that motivation to engage in cognitive effort was low - when participants were not identifiable (Petty, Harkins, & Williams, 1980) and when participants were low in need for cognition (Cacioppo & Petty, 1982), respectively. Under conditions where cognitive effort was expected to be high - when participants' responses were individually identifiable, and when participants were high in need for cognition, Martin et al. (1990) found contrast.

The inclusion/exclusion model

More recently, Schwarz and Bless (1992a, 1992b) also proposed a "partialing" model that might account for such findings. Consider the Strack et al. (1988) study described earlier. According to the inclusion/exclusion model, happiness with dating was "included" in happiness with life when the questions simply appeared in the survey. When the "given-new" communication norm was activated, however, happiness with dating was "excluded" from happiness with life, because response to the second question was supposed to be "new" information separate from happiness with dating. Thus, similar to the set-reset model, the inclusion/exclusion model posits that the default (i.e. no-correction) bias associated with contexts is assimilation (because of including activated contextual information or reactions in the representation of the target) and that correction-producing factors in the judgment setting can prompt exclusion (i.e. subtraction) of contextually activated information from the representation of the target. Thus, within
both of these models, effortful corrections (i.e. resetting or exclusion) lead to target judgments less like the context than in no-correction settings. Also, within both of these models, contrast effects are conceptualized as more effortful than assimilation effects (because the contrast effects are due to corrections whereas the assimilation effects are not). The inclusion/exclusion model adds the feature that excluded (subtracted) information can then be used to construct a standard of comparison (which also leads to contrast effects to the extent that the excluded information is extreme; see Schwarz & Bless, 1992a, pp. 238–241; see Petty & Wegener, 1993, Wegener & Petty, 1997, for additional discussion).

The Flexible Correction Model: corrections guided by naive theories of bias

Although work guided by the partialling models has been quite useful in determining when priming effects would or would not occur (or might even be reversed), some of the assumptions of these models (e.g. that contrast effects were more effortful than assimilation, and that corrections always make assessments of targets less like reactions to the contextual stimuli) seemed to be unduly limiting (especially if attempting to apply the models outside the priming domain). Thus, the goal of the initial work on the FCM was to develop a perspective that was more flexible than these “partialling” views. That is, in the FCM corrections are driven by respondents’ naive theories of how any given factor(s) have influenced (or might yet influence) their perceptions of the target, and these naive theories can be of very different biases across different contexts, targets, settings, and perceivers.

Basically, the FCM (Petty & Wegener, 1993; Wegener, 1994; Wegener & Petty, 1995, 1997) holds that corrections are aimed at removing the bias that social perceivers believe is associated with the factor(s) at hand. Consider, for example, a situation in which a person realizes that a bias might be operating (e.g. because the person has learned about a given judgmental bias in a psychology class). If the perceiver believes there is a small (or no) bias in a given situation, he or she attempts to adjust assessments of the true qualities of the target less than if he or she believes that there is a large bias. If the perceiver believes that the bias is to make the target seem higher on a dimension of judgment than would normally be the case, the perceiver attempts to adjust assessments of the target to be lower; if the perceiver believes that the bias is to make the target seem lower on a dimension of judgment than would normally be the case, the perceiver attempts to adjust assessments of the target to be higher than his or her initial reactions. If the person is warned of a bias (or realizes the potential for bias) before encountering the target, the person might engage in theory-based corrections on-line during exposure to the target, or the person might use theories of bias to guide exposure choices so as to avoid perceived or expected biases (see Wegener & Petty, 1995, 1997; Wilson & Brekke, 1994; Wilson, Houston, & Meyers, in press). The greater the perceived or expected bias, the more vigilant the perceiver might be in correcting on-line or in avoiding the biasing factor. Although theorists have noted for some time that people are likely to possess or generate naive theories about how various contextual factors might influence or have influenced their perceptions of targets, most of the emphasis regarding these theories has been on how incorrect they often are (e.g. Nisbett & Wilson, 1977; Wilson, Laske, & Stone, 1982). Empirical evidence regarding the role of theories of bias in correction phenomena has only recently begun to appear (e.g. Petty & Wegener, 1993; Wegener & Petty, 1995).

The Flexible Correction Model

There are a variety of issues and assumptions surrounding the use of naive theories as a basis for a model of bias correction. In the sections to follow, we present the basic postulates of the FCM presented by Wegener and Petty (1997) along with some explication of the reasons underlying the postulates and the implications of those views.

Postulate 1: Across judgment targets, perceivers, and situations, there is variation in the direction and magnitude of default (i.e. “uncorrected”) effects.

According to the FCM, there is variation in the direction and magnitude of uncorrected effects of target-related, personal, and situational variables. That is, in contrast to the partialling models (which assumed a default direction for context effects — “assimilation”), such an assumption is explicitly rejected in the flexible correction framework. Thus, the first form of flexibility that is evidenced in the FCM concerns the various types of effects and processes that can occur in the absence of corrections.

Postulate 2: There are individual and situational differences in motivation and ability to identify potential sources of bias. If a person is unmotivated or unable to search for potential sources of bias, then his or her assessment of the qualities of the target will reflect his or her initial reaction to the target.

To the extent that the perceiver is motivated and able to search for potential sources of bias, however, he or she will evaluate the potential biasing effect(s) of salient factors in the judgment setting (including factors external and internal to the perceiver). This is accomplished by consulting naive theories of the bias(es) associated with the salient factor(s).

The second form of flexibility in the FCM concerns individual and situational differences in motivation and ability to identify potential sources of bias. If a person lacks either the motivation or the ability to search for potential sources of bias, then corrective attempts are unlikely and his or her assessment of the target is more likely to correspond to his or her initial reaction(s) to the target — regardless of whether this initial reaction is based on effortful scrutiny of the target or on more cursory analyses (see Postulate 1; see also Petty & Cacioppo, 1986; Petty & Wegener, 1998). If motivation and ability to search for potential sources of bias are high, however, the
perceiver is likely to evaluate the potential biasing effect(s) of salient factors in the judgment setting. Although these factors might often be in the setting itself, salient biasing factors might also reside within the perceiver. For example, consider a person being asked to judge the violence of a target. A perceiver might view some situational factors as potentially biasing (e.g., the fact that a news program on television just finished reporting on a triple murder), but might also realize that he or she generally carries certain biases across situations (e.g., a belief that people in a certain profession all tend to be violent). Of course, ultimately, each of these biasing factors is likely to involve some interaction between the person and the situation, but there are likely to be some biasing factors that are identified as lying primarily in the immediate setting and others that act across settings because of the person's beliefs or other qualities.

Identification of possible bias is guided, in part, by people's beliefs or theories about how factors in the judgment setting (factors both internal and external to the perceiver) influence perceptions of targets. Some naive theories are likely to be stored in memory and are then accessed when salient features of the biasing factor are present in the judgment setting. At times, however, naive theories of bias are likely to be generated on-line as biasing factors are encountered in a given situation. Of course, stored theories of bias might also be amended or otherwise changed by experience of the specific biasing factor in the given judgment setting. These perceptions of bias are "naive theories" in that a given perceiver is not likely to have direct access to the effect of the factor(s) on his or her judgments, nor is he or she likely to possess the evidence that would be necessary to know the influence of the factor on the perceptions of others (see Wegener & Petty, in press). Thus, the person's naive perception or theory of the effect of the factor is the person's best estimate of the effect of the factor, regardless of whether that perception is in any way accurate or not (in fact, these theories will often be incorrect in either direction or magnitude).

Postulate 3: If the person believes that no bias is operating, then the person's assessment of the qualities of the target will reflect his or her initial reactions to the target. If the perceiver believes that a bias is operating (regardless of the accuracy or inaccuracy of this belief), then correction depends on the level of motivation and ability to engage in theory-based corrections.

If the perceiver is unmotivated or unable to engage in corrections, then the person's assessment of the target will reflect his or her initial reactions to the target.

If the perceiver is motivated and able to correct (i.e., to attempt to "debias") assessments of the target, then the perceiver engages in a correction guided by the theory of bias.

If no potential bias is identified, then the person's assessments of the target will probably reflect his or her initial reaction(s) to the target. What if a person does believe that a bias is operating, however? If the perceiver believes that a bias is operating, and if the perceiver is both motivated and able to attempt corrections, then the perceiver engages in a correction guided by the theory of bias. Many different factors could influence motivation or ability to engage in corrections. For instance, some people are more motivated to engage in thoughtful activities in general (e.g., they are high in need for cognition, Cacioppo & Petty, 1982) or are more motivated to avoid "incorrect" judgments in particular (i.e., they are high in fear of invalidity: Thompson, Naccarato, & Parker, 1989). Of course, situational variations in motivation to put effort into a task or to avoid inaccuracy could also influence motivation to engage in corrections. It is also possible for people to identify a bias, but to be unmotivated to correct for it because the bias is viewed as legitimate or even necessary (Petty, Wegener, & Fleming, 1996; see Wegener & Petty, 1996). Similarly, other situational or personal factors could distract perceivers or otherwise induce a cognitive load that would decrease ability for theory-based corrections (cf. Petty et al., 1976; Gilbert et al., 1988). Interestingly, if people are highly motivated to correct and are attempting to do so, but are unable to accomplish this because of the imposition of a cognitive load, bias might even be exaggerated in some circumstances. That is, when people are actively attempting to suppress a thought under cognitive load, this thought can become more accessible than when the thought is not being suppressed (Wegner, 1994), and this can lead to the thought having a greater contaminating effect on judgment (see Newman, Duff, Hedberg, & Blitstein, 1996). In addition to cognitive load, qualities of the uncorrected perceptions of the target could also influence ability to correct (e.g., if uncorrected perceptions are well integrated with additional knowledge of the target, cf. Schul & Burnstein, 1985; see Wegener & Petty, 1997, for additional discussions).

Postulate 4: Theory-guided corrections work in a direction opposite to the perceived bias and in a magnitude commensurate with the perceived magnitude of the bias. To the extent that the perceived bias is large, the theory of bias will create pressure toward greater adjustment (and/or vigilance in seeking qualities of the target that are consistent with greater adjustment) in assessments of the target.

When people identify a potential bias or biases and are motivated and able to engage in corrections, they attempt to adjust assessments of the target in a direction opposite to the perceived bias(es) and in a magnitude commensurate with the magnitude of the perceived bias(es). Thus, another crucial flexibility in the FCM is that corrections can go in different directions or in different amounts, depending on the person's perceptions of the bias at work. Of course, this corrective effort does not take place separate from available information (knowledge about the target either stored in the memory of the perceiver or available in the judgment setting). Part of this theory-guided correction is likely to include seeking of information (in memory or the environment) that would support these "corrected" assessments. If no such supporting information can be found, this might be one factor that could undermine theory-based correction.

We assume that corrective processes ensue when people become aware of a potential bias (and are motivated and able to engage in corrections).
People can become aware of a potential bias before, during, or after judging (or even encountering) the target. Accordingly, corrections for bias need not occur only after reacting to the target, but people might also anticipate a bias and attempt to avoid it by changing how information about the target is gathered or scrutinized. We regard such attempts at avoidance of bias as “preemptive corrections” (see Wegener & Petty, 1997, for example). Especially before people have a great deal of experience with attempts to correct for a given biasing factor, such attempts would likely depend on some level of conscious awareness of the potential bias. However, with more experience of the factor and of the correction process, less conscious awareness of the bias might be sufficient for instigating the correction process (and the correction process itself might become less effortful, that is, to a certain extent, routinized; Wegener & Petty, 1997; cf. Smith, 1989). In fact, even in those cases where rather conscious awareness of the bias factor occurs, we would not generally expect the whole of the correction process to be consciously reportable (consistent with Nisbett & Wilson, 1977). Rather, even if people are able to directly report the content of a given theory of bias, those same people might be unable to report which theory(ies) were used most in a correction, for example (i.e. even if content of a theory of bias is “explicit,” there can still be “implicit” effects of the theory, Wegener & Petty, in press; see also Petty, Wegener, & White, in press).

As noted earlier (see Postulate 1), within the FCM, no assumptions are made concerning the direction of the default (i.e. “uncorrected”) effect of potential biases. For example, within the context-effect domain, a factor might make initial reactions to the target more like reactions to the context (assimilation), might make initial reactions less like reactions to the context (contrast), or might have no effect at all. Regardless of the uncorrected effect, corrections are driven by the perceptions of the bias in that judgment setting. That is, corrections are aimed at removing perceived rather than actual bias. Although perceived and actual bias might coincide in certain circumstances, the two elements are conceptually distinct from one another. That is, a person might believe that a particular bias exists (and might attempt to remove that perceived bias) when no bias exists or even when a bias in the opposite direction is objectively present.

Postulate 5: Theory-based corrections can be undermined by a variety of factors that undermine the extent to which the theory of bias is viewed as applicable to the judgment target and setting, the extent to which the theory serves the perceiver’s judgment goals, and the extent to which the theory is accessible.

A variety of factors might determine the nature of theories of bias and the likelihood that those theories guide corrective attempts. A theory of bias could be learned through experience and stored in memory, or it could be generated on-line to address a particular judgment and/or setting. Stored theories are likely to have a greater basis in past experience (with the biasing agent, the target, or both); but a theory of bias generated for the specific target and setting might be more likely to be viewed as applicable to the particular corrective attempt. In many settings, the theory of bias that is used is probably some combination of a theory stored in memory along with adjustments to the theory based on the perceiver’s subjective experience of the context and target to be judged.

Perceived applicability of a theory of bias to a given setting and target is likely to depend on a variety of factors. For example, a theory of bias is more likely to be viewed as applicable to a given setting if the perceived biasing factor in that setting “matches” the theory well (i.e. if the biasing factor in the setting has a close resemblance to the “prototype” or representation of the biasing factor within the theory of bias). The “strength” of the theory in terms of its integration with related knowledge structures and its accessibility in memory would also help to determine the perceived applicability of the theory of bias, as would the “breadth” of the theory in terms of the situations and targets across which the theory is viewed as applicable. One could also view the notion of “breadth” as the globality versus specificity of the theory of bias. That is, some biasing factors might be viewed by some people as only having effects on certain kinds of targets or in certain kinds of settings, whereas other factors (or the same factors considered by other people) might be viewed as having effects across many kinds of targets and/or settings. Perceived applicability could also be influenced by the extent to which the perceiver experiences reactions to the target that are consistent with the reactions predicted by the theory of bias. If reactions to a target are quite different from those expected based on a theory of bias, it might seem less likely that the biasing factor is having an effect. Of course, a lack of reactions consistent with the theory might not undermine corrections if the theory of bias is relatively “strong” or “global” (or if the theory includes the possibility of decreasing typical reactions to the target rather than just increasing “biased” reactions). Thus, if a theory of bias is perceived as applicable to the judgment setting, serves the judgment goals of the perceiver, and is accessible when the perceiver assesses the target’s qualities, that theory is likely to guide efforts at removing the perceived bias. To the extent that any or all of these properties are lacking, the theory becomes less likely to guide corrections, and the person might construct a new theory to account for this instance.

Postulate 6: Although corrections generally require more motivation and ability (i.e. more cognitive effort) than lack of corrections (unless corrections become routinized), both corrected and uncorrected assessments of targets can vary in effort put into that assessment.

Postulate 7: Just as differences in effort for uncorrected judgments create differences in persistence, resistance, etc., corrected assessments based on greater effort persist longer over time, are more resistant to attempts at changing assessments of the target, and are more likely to guide additional judgments and behavior toward the target than are corrected assessments based on lower levels of effort.
We generally assume that theory-based corrections require more effort than a lack of correction (assuming the same uncorrected reactions), although at least some corrections might become routinized with repetition (cf. Smith, 1989; see Gilbert, McNulty, Giuliano, & Benson, 1992; Martin et al., 1990; Schwarz & Bless, 1992a). Even so, we postulate that corrections can vary in the extent of effort that goes into the correction. Some theory-based corrections are simply a one-time adjustment to an assessment of the overall qualities of the target, whereas other theory-based corrections also include scrutiny or even reinterpretation of a great deal of information relevant to the target. When a great deal of cognitive effort is put into corrected assessments and those assessments become well integrated with related knowledge structures, those corrected assessments are more likely to persist over time than are corrected assessments based on less cognitive effort that are less well integrated (cf. Petty & Cacioppo, 1986). Uncorrected processes can also vary in effort. Thus, although corrections require some level of cognitive effort, observance of cognitive effort per se does not necessarily imply that corrections have occurred (e.g., Petty et al., in press).

The FCM is not the only theory to postulate that correction processes might be guided by perceptions of the bias at work (although, to our knowledge, the FCM work was the first to directly test a model of corrections based on naive theories). Some earlier researchers speculated that people might adjust responses or perceptions based on how they thought certain biases were unduly influencing them (e.g., see Higgins et al., 1977; Thompson, Fong, & Rosenhan, 1981; Wyer & Budesheim, 1987), but no model of correction was born out of these isolated comments (which were typically provided in discussion sections, attempting to account for some aspect of the data not accounted for by the primary model or hypotheses). Also, since initial tests of the FCM in 1990 (reported in Wegener & Petty, 1992; Petty & Wegener, 1993) some theoretical papers have speculated that theory-based corrections might occur (e.g., Baumesser & Newman, 1994; Strack, 1992a; Strack & Hannover, 1996; Wilson & Brekke, 1994; see also Bargh, 1992; Strack et al., 1993). Although some of these statements included assumptions that were not consistent with the FCM (Strack, 1992a, 1992b; see Wegener & Petty, 1995, for discussion), much of what was said in those theoretical papers was quite consistent with the FCM and the data that had been generated to test it. For example, in a recent review of “mental contamination,” Wilson and Brekke (1994) noted that naive theories of bias might play a pivotal role in corrections (and noted that this was consistent with the view and data presented in Petty & Wegener, 1993). In fact, consistent with presentations of the flexible correction perspective (Petty & Wegener, 1993; Wegener, 1994; Wegener & Petty, 1995), Wilson and Brekke noted that people must be motivated to correct judgments of targets, must know the direction and magnitude of any bias that is present, and must be able to adjust responses if successful “debiasing” is to occur. As in Nisbett and Wilson (1977) and Wilson et al. (1982), however, the focus of the Wilson and Brekke discussion was on the inability of people to know which factors create biases, to know how much of a bias is being created, or to successfully adjust responses when biases are present (rather than providing any empirical evidence of the use of naive theories in attempts to correct assessments of targets).

Initial support for the flexible correction view

A model of corrections based on naive theories of bias can accommodate a variety of findings from areas as diverse as impression formation (e.g., Golding, Fowler, Long, & Latta, 1990; Martin, 1986; Martin et al., 1990), mood and judgment (e.g., Berkowitz & Torelli, 1990; Schwarz & Clore, 1983), jury consideration of inadmissible evidence (e.g., Thompson et al., 1981), and attribution (e.g., Gilbert et al., 1988) even though the original research in these areas was not concerned with the role of theories of bias in bias correction. In this past work, “corrections” consistently moved judgments away from reactions to the biasing factor. Thus, to the extent that social perceivers believed that these various factors produced biases in a direction consistent with reactions to the biasing factor, a theory-based correction would be entirely consistent with the observed results (see Petty & Wegener, 1993; Wegener & Petty, 1995, 1997, for discussions).

In addition to providing a potential explanation of past correction effects, the FCM makes a number of predictions that differ from those made by previously dominant models. First, as noted in Postulate 1, the FCM assumes that default (uncorrected) processes can make initial reactions toward the target either more or less like reactions to the biasing factor (rather than assuming that default processes only make reactions toward targets more like reactions toward the biasing factor as in the set-reset and inclusion/exclusion models). Regardless of the actual uncorrected effect, however, perceivers can believe that there is no bias, that the bias is to make reactions to the target too much like reactions to the biasing factor, or that the bias is to make reactions to the target too little like reactions to the biasing factor. Correlations are driven by these naive theories of how perceptions of the target have been (or might be) influenced. Because theories of bias can be of either direction (toward or away from the biasing factor) corrections can flexibly go in either direction.

Within the context-effect literature, an important implication of this view is that there are multiple ways to arrive at assimilation or contrast. Whereas the set-reset and inclusion/exclusion models view assimilation as a “default” and contrast as a result of effortful corrections, the FCM suggests that either effect could be “uncorrected” or the “corrected” result. To the extent that correction processes require effort, correction-based contrast might sometimes require more effort than default (no-correction) assimilation. Similarly, correction-based assimilation might sometimes require
more effort than default (no-correction) contrast (though the time we postulated this, correction-based assimilation had never been demonstrated; see Petty & Wegener, 1993). In comparison, according to a partialing view “the emergence of contrast effects requires extra processing steps, and more effort, than the emergence of assimilation effects” (Schwarz & Bless, 1992a, p. 240).

For a comparison between theory-based corrections and partialing (subtraction) views, the case of corrections driven by a theory of uncorrected contrast is a crucial case (because the theory of bias would lead one to correct in a direction opposite to a “removal of overlap” process). Thus, our early work on the FCM focused on this and related questions. For example, Petty and Wegener (1993, Study 1) showed that people do, in fact, believe that some contexts lead to biases that are contrastive in nature. Using one of the contexts for which a “contrastive” theory of bias was held (i.e., rating the desirability of exciting vacation locations was believed to make perceptions of typical midwestern American cities less desirable), Petty and Wegener (1993, Study 2) showed that corrections made ratings of targets more (rather than less) like ratings of the context (consistent with theory-based corrections). Moreover, Petty and Wegener (1993) found that these corrections were not attributable to scale anchoring effects (Study 3) and that similar corrections occurred using more subtle instigations of corrections (Study 4).

Of course, according to the FCM, corrections guided by judges’ naive theories of bias can go in opposite directions to the extent that the judges’ theories of bias are that opposite biases are at work. One possible case would be when people hold opposite theories about how a given context influences judgments for different targets. For example, a person might believe that thinking about the qualities of vacation locations would make average locations seem less desirable, but might also believe that thinking about the vacation locations would make a job in one of those vacation spots seem more desirable (Wegener & Petty, 1995, Study 1). Some previous models of assimilation and contrast might predict that different effects on target judgment would occur for the same context (e.g., for some targets, the context might be “included” in the representation of the target – leading to assimilation – but the same context might be “excluded” from the representation of another target – leading to contrast; Schwarz & Bless, 1992a; cf. Herr et al., 1983). However, only a theory of correction based on judges’ naive theories of bias predicts different corrections (i.e., away from and closer to the context) for these different targets.

Consistent with these notions, Wegener and Petty (1995, Studies 2 & 3) showed that opposite corrections occur for different targets judged within the same context when those different targets were associated with opposing theories of bias. Within this pattern, corrections for perceived contrast were also shown for the first time to potentially lead to “corrected assimilation” – in which corrections for perceived contrast led to target ratings that were even closer to ratings of the context than when no context was present.

These opposite corrections for the effects of the same context on different targets present a unique problem for correction models based on partialing or subtraction processes because contextually activated reactions (which are supposed to be “subtracted” in order to correct assessments of targets) are the same for each set of targets. Thus, according to “partialing” models, unless the contextual reactions are quite mixed rather than consistent, subtraction of overlap would tend to move assessments of each target in the same rather than opposite directions.

Whereas theories of bias were associated with different targets in the Wegener and Petty (1995, Studies 2 & 3) opposite-correction studies, Wegener and Petty (1995, Study 4) also found some evidence of opposite corrections when theories varied across people. In this study, participants’ individual theories of bias were measured, and participants were later exposed to target judgments within conditions that would encourage corrections. Theories of bias significantly predicted shifts in target ratings, indicating that as theories of bias became more negative, shifts in target ratings became more positive. Within the overall effect, there was evidence of correction associated with both direction and magnitude of the perceived bias. That is, a dichotomous variable denoting direction of perceived bias accounted for significant variance in the positivity of shifts in target ratings, consistent with the opposite corrections found with shared theories varying across targets. In addition, participants corrected to a greater extent as people’s theories of bias become more extreme, controlling for the direction of bias (see Wegener & Petty, 1995, p. 47 for descriptions of the various magnitude analyses).

Thus, in some of the correction studies, shared theories of bias were identified and corrections consistent with those theories were found (Petty & Wegener, 1993). In other studies, documented differences in theories predicted the direction of corrections (Wegener & Petty, 1995). In some of these studies, theories of bias varied with the target of judgment (Wegener & Petty, 1995, Studies 2 & 3). In other studies, theory varied across perceivers (Wegener & Petty, 1995, Study 4). A full triangulation of theories of bias could be achieved by showing that theories also guide corrections when theories of bias vary with different contexts (across people and with the same target). That is, to the extent that corrections are found that are consistent with theories of bias, regardless of whether those theories of bias are associated with different judgment targets, different perceivers, or different contexts, this makes it rather difficult to reasonably account for the data by making reference to non-theory qualities of the judgment setting. In the sections to follow, we describe two studies that complete this triangulation by demonstrating opposite corrections of perceptions of the same target within different contexts (that are consistent with measured theories of bias). In addition, these studies utilized contexts that were quite different from the contexts that had been used in the Petty and Wegener (1993) and the Wegener and Petty (1995) work (thereby increasing the breadth of the evidence supportive of theory-based corrections).
Study 1

In the first of these “opposite correction” studies, we used a set of contexts shown in past work to bring about assimilation and contrast effects on judgments of the same stimuli. Specifically, we asked people to rate the sizes of various animals and then asked them to rate the size of an ambiguous target animal either with or without an instruction aimed at instigating correction processes.

Theories of bias In order to set the stage for the correction experiment, we asked 40 pretest subjects to tell us how certain context ratings would be likely to influence people’s ratings of target animals. That is, in a questionnaire asking about the effects of a number of potential biasing factors, people responded to the question “If people were asked to first rate the size of extremely large animals (e.g. elephant or whale), how would that influence people’s perceptions of the size of later ambiguous animals (e.g. monkey)?” Responses were made to the root “Would make the ambiguous animal seem” on a nine-point scale anchored with “smaller than if no extremely large animals were considered” (−4) and “larger than if no extremely large animals were considered” (+4). The second estimate of bias was for a different context but the same ratings of the same targets. That is, people responded to the question “If people were asked to first rate the size of moderately large animals (e.g. cow or lion), how would that influence people’s perceptions of the size of later ambiguous animals (e.g. monkey)?” Responses were made to the same root as above on a nine-point scale anchored with “smaller than if no large animals were considered” (−4) and “larger than if no large animals were considered” (+4).

Ratings of the perceived judgmental effects of each context were analyzed by testing the difference between the average rating for each context and the zero-point of the scale (i.e. no perceived influence of the context) using the Student’s t statistic (each with df = 39). Responses showed that people tended to believe that extremely large context animals would make an ambiguous target animal seem smaller (\(M = -0.61, t = 1.72, p < 0.09 \)) but believed that moderately extreme context animals would make an ambiguous target animal seem larger (\(M = +0.70, t = 1.99, p < 0.06 \)). Thus, although people’s perceptions of “size” biases were not as strong or consistent as some theories of bias assessed in past research (e.g. see Petty & Wegener, 1993), the observed theories would seem to lead corrections of the same targets in opposite directions.

Opposite theory-based corrections One hundred and nineteen research participants were told that we were interested in general knowledge that college students possessed about different categories of facts. The category that was given for this activity was “Animal sizes.” Participants were asked to provide ratings of size for a number of animals and were asked to provide ratings even if the animal was unfamiliar (so we would have baseline perceptions of all students). The activity was administered as part of a session described as prescreening of materials for use in future studies. Respondents first rated the overall size and weight of either large animals (i.e. antelope, cow, lion, and tiger) or extremely large animals (i.e. whale, hippo, elephant, and rhinoceros) and then rated the overall size and weight of either a real or unreal ambiguous animal (i.e. a monkey or lemphor, respectively; see Herr et al., 1983). The two ratings of each animal were provided on nine-point scales anchored with 1 = “very small” and “very light,” respectively and 9 = “very large” and “very heavy,” respectively. Ratings of the target animal were made either immediately following the context ratings or after a correction instruction. That is, some participants were asked to “make sure your rating of the next animal is not influenced by your perceptions of the animals you just rated.”

Ratings of the size and weight of each animal were averaged to form the primary dependent measure. In preliminary analyses, whether the target was real or unreal had only an overall main effect on judgment (with the real animal being rated significantly smaller, \(M = 2.83 \), than the fictitious animal, \(M = 3.84, p < 0.001 \)). Therefore, in subsequent analyses, this factor was included only as a blocking variable. A 2 (Extremity of context: moderate, extreme) X 2 (Correction: instruction, none) between-subjects ANOVA showed that opposite corrections did tend to occur [for the Extremity X Correction interaction, \(F(1,110) = 3.35, p < 0.07 \)]. That is, although there was no difference between target ratings in the moderate (\(M = 3.33 \)) and extreme contexts (\(M = 3.38, p > 0.8 \)) when targets were rated immediately after the context animals, there was a significant difference between target ratings in the moderate (\(M = 2.91 \)) and extreme context (\(M = 3.72 \)) when a correction instruction was given (\(p < 0.006 \)). That is, for the context expected by pretest subjects to make targets seem larger (that is, the moderately large context) the correction instruction tended to make ratings of the target animals smaller. For the context expected by pretest subjects to make targets seem smaller (that is, the extremely large context), however, the correction instruction tended to make ratings of the target animals larger.

Study 2

Given that corrections in Study 1 were rather weak (perhaps because theories of bias were not particularly extreme or consistent across respondents), we conducted a similar study using very different stimuli. In this study, one group of research participants judged the violence of either very violent or very passive context people and then rated the violence of well-known but ambiguous targets either following an instruction not to let their perceptions of the previous people influence their ratings of the targets or with no correction instruction. Another group of research participants reported their theories of how such contexts would influence initial perceptions of the targets.
Theories of bias Twelve undergraduate psychology students received a questionnaire describing two contexts and judgments to be made, and were asked to provide their perceptions of how each context would affect the respective judgment. Instructions explained that a number of kinds of situations have been found to reliably influence people’s judgments, but that little work had investigated the extent to which people are aware of the biases that situations create. Participants were asked to provide their best estimate of how each situation would or would not direct people’s perceptions of the targets discussed.

For the first estimate of bias, participants responded to the question: “If you were asked to rate how violent people like George Foreman or Arnold Schwarzenegger are, how would you rate a number of extremely violent people (like Adolf Hitler or Josef Stalin) affect perceptions of George or Arnold?” Responses were made to the root “would make George and Arnold seem” on a nine-point scale anchored with “less violent than if no violent people were considered” (-4) and “more violent than if no violent people were considered” (+4). The second estimate of bias was for a different context but the same ratings of the same targets. That is, participants responded to the question: “If you were asked to rate how violent people like George Foreman or Arnold Schwarzenegger are, how would you rate a number of extremely non-violent people (like Gandhi or Jesus Christ) affect perceptions of George or Arnold?” Responses were made to the same root as earlier and on a similar scale anchored with “less violent than if no-violent people weren’t considered” (-4) and “more violent than if non-violent people weren’t considered” (+4).

Ratings of the perceived judgmental effects of each context were analyzed by testing the difference between the average rating for each context and the zero-point of the scale (i.e., no perceived influence of the context) using the Student’s t statistic (each with df = 11). Participants believed that rating extremely violent people before rating George Foreman and Arnold Schwarzenegger would make George and Arnold seem less violent than usual (M = -1.92; t = -2.82, p < 0.017). Also, participants believed that rating extremely non-violent people before rating George Foreman and Arnold Schwarzenegger would make George and Arnold seem more violent than usual (M = 1.67; Student’s t = 3.66, p < 0.0027). Thus, it seems possible to find opposite corrections of target judgments based on the opposite theories of bias associated with the different judgment contexts.

Opposite theory-based corrections Ninety-four undergraduate psychology students received experimental packets that were randomly assigned to a 2 (Theory of influence: more violent than usual, less violent than usual) X 2 (Correction: instruction, none) between-subjects design. Participants were told that the following ratings concerned people’s perceptions of violence and that, for the following people, the question to be answered was “How violent do you think this person is?”

Participants first rated either three extremely violent people (i.e., Adolf Hitler, Josef Stalin, and Saddam Hussein – a context expected by participants in the theory-identification portion of the study to make perceptions of targets less violent than usual) or three extremely non-violent people (e.g., the Pope, Jesus Christ, and Gandhi – a context expected by participants in the theory-identification study to make perceptions of targets more violent than usual) on a scale anchored at 1 = “not at all violent” and 10 = “very violent.” Then, research participants either immediately rated two target people (i.e., Arnold Schwarzenegger and George Foreman) on the same scale (no-correction condition), or were first asked not to let perceptions of the new two people be influenced by perceptions of the people they had just rated (correction-instruction condition).

Ratings of the two targets were averaged to form the primary dependent measure. This measure was submitted to a 2 (Theory of influence: more violent than usual, less violent than usual) X 2 (Correction: instruction, none) between-subject ANOVA. Results showed only the expected Theory X Correction interaction, F(1, 90) = 11.81, p < 0.0009. For participants who rated the targets in the extremely violent context (and expected that perceptions of targets would be biased toward less violence than usual), target ratings were more violent when a correction instruction was given (M = 4.98) than when no correction instruction was given (M = 3.58); p < 0.027, one-tailed. However, for participants who rated the targets in the extremely non-violent context (and expected that perceptions of targets would be biased toward more violence than usual), target ratings were less violent when a correction instruction was given (M = 3.87) than when no correction instruction was given (M = 5.99); p < 0.003, one-tailed.

Thirteen additional people also participated in the study who received the target ratings before receiving any ratings of context items. Thus, responses in this control condition could be used to determine when biases were actually operating and when corrected ratings were moved toward or away from context-independent ratings. Responses in this control condition (M = 5.575) showed that bias was only present under no-correction conditions when targets were rated after the extremely violent people (p < 0.02). When targets were rated after the extremely non-violent people, ratings did not differ from context-independent ratings (p > 0.62). Thus, corrections away from initial perceptions of targets following the non-violent context represents another case in which participants corrected according to a theory of bias even though no demonstrable bias was operating. In addition, corrections in the non-violent context condition led target ratings to be lower than context-independent ratings (p < 0.06). Because of this, the results of this study cannot be easily accounted for by response language effects (see also Petty & Wegener, 1993).

Recently, opposite theory-based corrections of ratings of the same target were also obtained by Martin (1996). In Martin’s study, participants rated context people who had been pretested to be either attractive or unattractive and then rated moderately attractive targets either with or without a
correction instruction. As in the current study, pretest subjects verified that people perceived the attractive context as making the targets seem less attractive than usual and the unattractive context as making the targets seem more attractive than usual. Consistent with our results, Martin (1996) found contrast when there was no correction instruction, but found assimilation when participants were warned of the potential bias.

Summary Studies guided by the FCM have provided evidence for a variety of flexibilities in corrections of social judgments. The various theoretical studies have shown that people can believe that either assimilation or contrast can be the uncorrected impact of contexts, and have also shown that people can possess or generate opposite theories of bias for the same contextual factor influencing different targets or for different contexts influencing the same targets. The correction studies provided the first empirical evidence of corrections based on judges’ naive theories of bias. These corrections have been shown across a variety of contexts and types of judgments (e.g., desirability of locations or weather, attractiveness of people or products, violence of people, size of animals). Also, opposite theories of bias have been shown to predict opposite corrections, regardless of whether the opposite theories of bias were for effects of the same context on different targets, effects of different contexts on the same target, or effects of the same context on the same targets (but held by different people). Some of the studies provided the first evidence for assimilation effects resulting from theory-based corrections (i.e., “overcorrections”) for perceived contrast. Finally, the direction and magnitude of participants’ own reported theories of bias predicted later shifts in target ratings under conditions that encouraged corrections. None of these predictions or results were derivable from the partalling views of bias correction (see Petty & Wegener, 1993; Wegener & Petty, 1995, 1997, for additional discussion).

Current and future directions

How have researchers reacted to the FCM and to the data generated by that perspective? Initial comments regarding FCM data attempted to account for the data using the processes postulated by the partalling models (see Petty & Wegener, 1993, pp. 156–160, for extensive discussions of various ways people might attempt to use the set-reset and inclusion/exclusion models to account for the Petty & Wegener, 1993, results). More recently, partalling models have been cited as though they involve some knowledge on the part of perceivers of how (in what direction) to correct (e.g., see Tesser & Martin, 1996, pp. 417–418). We are happy to see researchers utilize FCM notions of theory-based corrections. Yet, it is important to note that the processes posited in the original versions of the “partalling” models (Martin, 1986; Schwarz & Bless, 1992a) did not afford flexibility in the direction of correction (if they were intended to do
possesses, the importance to the person of arriving at an unbiased assessment of the target, time pressures for judgment, etc.).

Additional interesting areas for future work concern the generation of theories of bias and the ways in which stored theories of bias might be modified in specific judgment settings. For example, as we noted earlier, it might be possible to undermine a stored theory of bias (at least in certain circumstances) if reactions to the target seem inconsistent with the theory. Consider a situation in which a person possesses a stored theory that feelings induced by a sad movie would make perceptions of unfamiliar people more negative than usual. If such a person were to meet a new person and really like him or her, the perceivers might question the applicability of the theory of bias to this target or to this situation. If so, the person might question whether the movie affected him or her the way other sad movies do, or the person might question whether sad moods in fact have the effects that were expected. If such a "disconfirmation" of the theory were to happen again, the person might begin to revise the theory or develop beliefs about when the theory is or is not appropriate. It could also be that a well-developed "strong" theory of bias (or a theory that itself includes numerous settings and/or targets for which the bias occurs) might withstand reactions to the target that are inconsistent with the theory. Such a theory might then continue to guide corrections (i.e., the perceivers would view the new person as especially likeable, because the sad movie would make impressions less positive than they would otherwise be - even though the uncorrected impression was already quite positive). This might also depend on whether the perceivers could imagine having a view of the target that was more favorable (or unfavorable) than his or her experienced reactions (which would also depend on additional knowledge about the target). These and other interactions between stored theories and experienced reactions (which might give rise to generated theories based on salient aspects of the judgment setting) should receive future research attention.

Finally, within the FCM perspective, it will also be important to investigate the many personal and situational factors that might induce a motive to be "accurate" (and to link those factors with other determinants of when corrections will and will not occur). One important aspect of the FCM in this regard is that a motive to be "accurate" is not sufficient for corrections to take place. That is, if no potential bias is perceived, corrections are unlikely no matter how much "accuracy motivation" might exist (see Wegener & Petty, 1997). Therefore, some factors that probably increase motivation to be "accurate" (e.g., perceiving the target as personally relevant, Petty & Cacioppo, 1979) might not induce corrections in many settings. This was recently demonstrated by Petty et al. (in press, Study 2). In this study, biasing effects of a peripheral cue to persuasion (i.e., likeability of the source) were found to be eliminated when the policy was personally relevant to message receivers. Yet, when an instruction was given not to be influenced by perceptions of the source, significant corrections occurred (even though no effect of source perceptions had been observed without the correction instruction). This suggests that the original elimination of the impact of the source under high processing conditions had not been due to explicit attempts at correction (or else there would have been less need for additional correction when the instruction was given under high rather than low processing conditions). Instead, under high processing conditions, message recipients might have focused on the merits of the arguments in the message and might not have paid attention to the potential source-based bias (until the instruction directed them toward the source). In future work, linking correction outcomes directly to the theories of bias held by perceivers might help to determine when lack of a biasing effect is due to corrections and when it is not.

It is our hope that correction processes based on theories of bias can provide a bridge for studying corrections in many domains of psychology. To this end, the FCM provides a unifying perspective from which such corrections can be conceptualized, studied, and (hopefully) understood. We look forward to further development of flexible correction notions and to investigations of the untested portions of the flexible correction framework.

Notes

1. Although effects of mood, especially removal of effects of mood, have typically been conceptualized using non-corrective models (e.g., the mood-as-information view, Schwarz, 1990; Schwarz & Clore, 1983), we believe that becoming aware of mood-based biases might instigate correction processes much like those activated by perceiving biases associated with any other kind of stimulus (see Petty & Wegener, 1993; Wegener & Petty, 1997).

2. This is not to say that "partialling" models would predict that only one type of context effect can occur without corrections, but the processes postulated by these models would not be applicable when other kinds of uncorrected effects occur. The FCM is equally applicable, regardless of the qualities of the observed uncorrected effects.

3. This does not mean that perceivers can necessarily consciously report the correction processes that they undertake, but people should often be able to report their perceptions of the bias associated with a given context and target (though there are many potential pitfalls with such assessments - e.g., that in retrospective reports, a person might report lack of an effect of the biasing factor because of corrections rather than because of a lack of perception of potential bias).

4. Even though corrections might generally require more effort than a lack of corrections, this should not be taken as suggesting that "corrected" assessments of targets should necessarily persist over time or resist changes more than "uncorrected" assessments. Because "uncorrected" assessments are more directly based on reactions to the target (and such reactions might be elicited or recur upon additional presentations of the target), there might be a variety of settings in which "uncorrected" assessments tend to persist and resist change to a greater extent than "corrected" assessments (see Petty & Wegener, 1998, for similar comments regarding comparison of changed and unchanging attitudes).

5. At the same time, this study also showed that people hold theories of bias that are "animative" for such biasing factors as priming tasks and mood. Effects of each of these factors have been "corrected" in previous work by making ratings of targets less like the context - which, given these theories of bias, was consistent with both a theory-based correction and a "partialling" view.
Metacognition

6. Respondents' Need for Cognition (Cacioppo & Petty, 1982) was also included in this analysis, but the only marginal effect of this variable was that people low in need for cognition rated targets as larger than did people high in need for cognition (p < 0.06).

7. That is, a response-language account of correction for contrast that occurs when extreme exemplars are used to define the response scale, and that this contrast diminishes or disappears as participants' 'usual' conceptions of the response scale are used under correction conditions. The response language perspective cannot account for a correction that occurs when no observable bias is present under 'no-correction' conditions and the corrected assessments of targets differ from the no-context ratings of the target (as in the low-violence context of the present study).

References

Wegener, D.T. (1994). The flexible correction model: Using naive theories of bias to correct assessments of targets. Doctoral dissertation, Ohio State University, Columbus, OH.

